Rate of convergence of Thresholding Greedy Algorithms

被引:0
作者
Temlyakov, V. N. [1 ,2 ,3 ,4 ]
机构
[1] Russian Acad Sci, Steklov Math Inst, Moscow, Russia
[2] Lomonosov Moscow State Univ, Moscow, Russia
[3] Moscow Ctr Fundamental & Appl Math, Moscow, Russia
[4] Univ South Carolina, Columbia, SC 29208 USA
基金
俄罗斯科学基金会;
关键词
greedy algorithm; bases; rate of convergence; APPROXIMATION;
D O I
10.4213/sm9926e
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The rate of convergence of the classical Thresholding Greedy Algorithm with respect to some bases is studied. We bound the error of approximation by the product of two norms, the norm of f and the A(1)-norm of f. We obtain some results for greedy bases, unconditional bases and quasi-greedy bases. In particular, we prove that our bounds for the trigonometric basis and Haar basis are optimal. Bibliography: 16 titles.
引用
收藏
页码:275 / 289
页数:15
相关论文
共 16 条
[1]   Hyperbolic wavelet approximation [J].
DeVore, RA ;
Konyagin, SV ;
Temlyakov, VN .
CONSTRUCTIVE APPROXIMATION, 1998, 14 (01) :1-26
[2]  
Donahue MJ, 1997, CONSTR APPROX, V13, P187
[3]   A DISCRETE TRANSFORM AND DECOMPOSITIONS OF DISTRIBUTION SPACES [J].
FRAZIER, M ;
JAWERTH, B .
JOURNAL OF FUNCTIONAL ANALYSIS, 1990, 93 (01) :34-170
[4]  
Kashin B.S., 1989, ORTHOGONAL SERIES TR, V75
[5]  
Konyagin S.V., 1999, E J APPROX, V5, P365
[6]  
Temlyakov V, 2018, C MO AP C M, V32, P129
[7]  
Temlyakov V, 2018, C MO AP C M, V32, DOI 10.1017/9781108689687
[8]  
Temlyakov V., 2015, Advanced Courses in Mathematics-CRM Barcelona, DOI DOI 10.1007/978-3-0348-0890-3
[9]  
Temlyakov VN, 2023, Arxiv, DOI arXiv:2304.06423
[10]   Greedy approximation with regard to non-greedy bases [J].
Temlyakov, V. N. ;
Yang, Mingrui ;
Ye, Peixin .
ADVANCES IN COMPUTATIONAL MATHEMATICS, 2011, 34 (03) :319-337