Investigation on integro-differential equations with fractional boundary conditions by Atangana-Baleanu-Caputo derivative

被引:1
作者
Harisa, Samy A. [1 ,2 ]
Faried, Nashat [2 ]
Vijayaraj, V. [3 ]
Ravichandran, C. [3 ]
Morsy, Ahmed [1 ]
机构
[1] Prince Sattam bin Abdulaziz Univ, Coll Arts & Sci, Dept Math, Wadi Aldawaser, Saudi Arabia
[2] Ain Shams Univ, Fac Sci, Dept Math, Cairo, Egypt
[3] Kongunadu Arts & Sci Coll, Dept Math, Coimbatore, Tamil Nadu, India
关键词
DIFFERENTIAL-EQUATIONS; MESHES;
D O I
10.1371/journal.pone.0301338
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
We establish, the existence and uniqueness of solutions to a class of Atangana-Baleanu (AB) derivative-based nonlinear fractional integro-differential equations with fractional boundary conditions by using special type of operators over general Banach and Hilbert spaces with bounded approximation numbers. The Leray-Schauder alternative theorem guarantees the existence solution and the Banach contraction principle is used to derive uniqueness solutions. Furthermore, we present an implicit numerical scheme based on the trapezoidal method for obtaining the numerical approximation to the solution. To illustrate our analytical and numerical findings, an example is provided and concluded in the final section.
引用
收藏
页数:15
相关论文
共 50 条
[31]   FRACTIONAL INTEGRO-DIFFERENTIAL EQUATIONS WITH DUAL ANTI-PERIODIC BOUNDARY CONDITIONS [J].
Ahmad, Bashir ;
Alruwaily, Ymnah ;
Alsaedi, Ahmed ;
Nieto, Juan J. .
DIFFERENTIAL AND INTEGRAL EQUATIONS, 2020, 33 (3-4) :181-206
[32]   NEW RESULTS ON CAPUTO FRACTIONAL VOLTERRA-FREDHOLM INTEGRO-DIFFERENTIAL EQUATIONS WITH NONLOCAL CONDITIONS [J].
Sharif, A. A. ;
Hamoud, A. A. ;
Hamood, M. M. ;
Ghadle, K. P. .
TWMS JOURNAL OF APPLIED AND ENGINEERING MATHEMATICS, 2025, 15 (02) :459-472
[34]   Existence and Ulam-Hyers Stability Results for a Class of Fractional Integro-Differential Equations Involving Nonlocal Fractional Integro-Differential Boundary Conditions [J].
Haddouchi, Faouzi .
BOLETIM SOCIEDADE PARANAENSE DE MATEMATICA, 2024, 42
[35]   Solutions of nonlinear integro-differential equations of fractional order defined using fractional boundary conditions [J].
Hamarashid, Hawsar A. ;
Hama, Mudhafar F. ;
Sabir, Pishtiwan Othman ;
El-Deeb, Sheza M. ;
Catas, Adriana .
JOURNAL OF INEQUALITIES AND APPLICATIONS, 2025, 2025 (01)
[36]   Riemann-Liouville fractional integro-differential equations with fractional nonlocal integral boundary conditions [J].
Ahmad, Bashir ;
Nieto, Juan J. .
BOUNDARY VALUE PROBLEMS, 2011, :1-9
[37]   Numerical solutions and geometric attractors of a fractional model of the cancer-immune based on the Atangana-Baleanu-Caputo derivative and the reproducing kernel scheme [J].
Maayah, Banan ;
Arqub, Omar Abu ;
Alnabulsi, Salam ;
Alsulami, Hamed .
CHINESE JOURNAL OF PHYSICS, 2022, 80 :463-483
[38]   Nonlocal boundary value problems for integro-differential Langevin equation via the generalized Caputo proportional fractional derivative [J].
Khaminsou, Bounmy ;
Thaiprayoon, Chatthai ;
Alzabut, Jehad ;
Sudsutad, Weerawat .
BOUNDARY VALUE PROBLEMS, 2020, 2020 (01)
[39]   Investigating a Class of Generalized Caputo-Type Fractional Integro-Differential Equations [J].
Ali, Saeed M. ;
Shatanawi, Wasfi ;
Kassim, Mohammed D. ;
Abdo, Mohammed S. ;
Saleh, S. .
JOURNAL OF FUNCTION SPACES, 2022, 2022
[40]   MULTIPLE SOLUTIONS OF NONLINEAR FRACTIONAL IMPULSIVE INTEGRO-DIFFERENTIAL EQUATIONS WITH NONLINEAR BOUNDARY CONDITIONS [J].
Wang, Xuhuan ;
Lu, Liang ;
Liang, Jitai .
MATHEMATICA SLOVACA, 2016, 66 (05) :1105-1114