Investigation on integro-differential equations with fractional boundary conditions by Atangana-Baleanu-Caputo derivative

被引:1
作者
Harisa, Samy A. [1 ,2 ]
Faried, Nashat [2 ]
Vijayaraj, V. [3 ]
Ravichandran, C. [3 ]
Morsy, Ahmed [1 ]
机构
[1] Prince Sattam bin Abdulaziz Univ, Coll Arts & Sci, Dept Math, Wadi Aldawaser, Saudi Arabia
[2] Ain Shams Univ, Fac Sci, Dept Math, Cairo, Egypt
[3] Kongunadu Arts & Sci Coll, Dept Math, Coimbatore, Tamil Nadu, India
来源
PLOS ONE | 2024年 / 19卷 / 05期
关键词
DIFFERENTIAL-EQUATIONS; MESHES;
D O I
10.1371/journal.pone.0301338
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
We establish, the existence and uniqueness of solutions to a class of Atangana-Baleanu (AB) derivative-based nonlinear fractional integro-differential equations with fractional boundary conditions by using special type of operators over general Banach and Hilbert spaces with bounded approximation numbers. The Leray-Schauder alternative theorem guarantees the existence solution and the Banach contraction principle is used to derive uniqueness solutions. Furthermore, we present an implicit numerical scheme based on the trapezoidal method for obtaining the numerical approximation to the solution. To illustrate our analytical and numerical findings, an example is provided and concluded in the final section.
引用
收藏
页数:15
相关论文
共 50 条
[21]   On the Langevin fractional boundary value integro-differential equations involving ψ-Caputo derivative with two distinct variable-orders [J].
Zerbib, Samira ;
Hilal, Khalid ;
Kajouni, Ahmed .
COMPUTATIONAL & APPLIED MATHEMATICS, 2025, 44 (05)
[22]   Analysis of impulsive Caputo fractional integro-differential equations with delay [J].
Zada, Akbar ;
Riaz, Usman ;
Jamshed, Junaid ;
Alam, Mehboob ;
Kallekh, Afef .
MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2025, 48 (02) :2102-2121
[23]   On Sequential Fractional Integro-Differential Equations with Nonlocal Integral Boundary Conditions [J].
Ahmad, Bashir ;
Alsaedi, Ahmed ;
Agarwal, Ravi P. ;
Alsharif, Alaa .
BULLETIN OF THE MALAYSIAN MATHEMATICAL SCIENCES SOCIETY, 2018, 41 (04) :1725-1737
[24]   A cardinal approach for nonlinear variable-order time fractional Schrodinger equation defined by Atangana-Baleanu-Caputo derivative [J].
Heydari, M. H. ;
Atangana, A. .
CHAOS SOLITONS & FRACTALS, 2019, 128 :339-348
[25]   Fractional Integro-Differential Equations Involving ψ-Hilfer Fractional Derivative [J].
Abdo, Mohammed S. ;
Panchal, Satish K. .
ADVANCES IN APPLIED MATHEMATICS AND MECHANICS, 2019, 11 (02) :338-359
[26]   On hybrid Caputo fractional integro-differential inclusions with nonlocal conditions [J].
Ahmad, Bashir ;
Ntouyas, Sotiris K. ;
Tariboon, Jessada .
JOURNAL OF NONLINEAR SCIENCES AND APPLICATIONS, 2016, 9 (06) :4235-4246
[27]   RETRACTED: On the formulation of Adams-Bashforth scheme with Atangana-Baleanu-Caputo fractional derivative to model chaotic problems (Retracted Article) [J].
Owolabi, Kolade M. ;
Atangana, Abdon .
CHAOS, 2019, 29 (02)
[28]   Adaptation of kernel functions-based approach with Atangana-Baleanu-Caputo distributed order derivative for solutions of fuzzy fractional Volterra and Fredholm integrodifferential equations [J].
Abu Arqub, Omar ;
Singh, Jagdev ;
Alhodaly, Mohammed .
MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2023, 46 (07) :7807-7834
[29]   NONLINEAR NONLOCAL ψ-CAPUTO FRACTIONAL INTEGRO-DIFFERENTIAL EQUATIONS OF SOBOLEV TYPE [J].
Liang, Jin ;
Mu, Yunyi ;
Xiao, Ti-jun .
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES S, 2024,
[30]   Discussion on the controllability results for fractional neutral impulsive Atangana-Baleanu delay integro-differential systems [J].
Williams, W. Kavitha ;
Vijayakumar, V. .
MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2021,