Investigation on integro-differential equations with fractional boundary conditions by Atangana-Baleanu-Caputo derivative

被引:0
|
作者
Harisa, Samy A. [1 ,2 ]
Faried, Nashat [2 ]
Vijayaraj, V. [3 ]
Ravichandran, C. [3 ]
Morsy, Ahmed [1 ]
机构
[1] Prince Sattam bin Abdulaziz Univ, Coll Arts & Sci, Dept Math, Wadi Aldawaser, Saudi Arabia
[2] Ain Shams Univ, Fac Sci, Dept Math, Cairo, Egypt
[3] Kongunadu Arts & Sci Coll, Dept Math, Coimbatore, Tamil Nadu, India
来源
PLOS ONE | 2024年 / 19卷 / 05期
关键词
DIFFERENTIAL-EQUATIONS; MESHES;
D O I
10.1371/journal.pone.0301338
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
We establish, the existence and uniqueness of solutions to a class of Atangana-Baleanu (AB) derivative-based nonlinear fractional integro-differential equations with fractional boundary conditions by using special type of operators over general Banach and Hilbert spaces with bounded approximation numbers. The Leray-Schauder alternative theorem guarantees the existence solution and the Banach contraction principle is used to derive uniqueness solutions. Furthermore, we present an implicit numerical scheme based on the trapezoidal method for obtaining the numerical approximation to the solution. To illustrate our analytical and numerical findings, an example is provided and concluded in the final section.
引用
收藏
页数:15
相关论文
共 50 条
  • [1] On Implicit Atangana-Baleanu-Caputo Fractional Integro-Differential Equations with Delay and Impulses
    Karthikeyann, Panjaiyan
    Poornima, Sadhasivam
    Karthikeyan, Kulandhaivel
    Promsakon, Chanon
    Sitthiwirattham, Thanin
    JOURNAL OF MATHEMATICS, 2024, 2024
  • [2] Analysis of Existence and Stability Results for Impulsive Fractional Integro-Differential Equations Involving the Atangana-Baleanu-Caputo Derivative under Integral Boundary Conditions
    Reunsumrit, Jiraporn
    Karthikeyann, Panjaiyan
    Poornima, Sadhasivam
    Karthikeyan, Kulandhaivel
    Sitthiwirattham, Thanin
    MATHEMATICAL PROBLEMS IN ENGINEERING, 2022, 2022
  • [3] On nonlinear pantograph fractional differential equations with Atangana-Baleanu-Caputo derivative
    Abdo, Mohammed S.
    Abdeljawad, Thabet
    Kucche, Kishor D.
    Alqudah, Manar A.
    Ali, Saeed M.
    Jeelani, Mdi Begum
    ADVANCES IN DIFFERENCE EQUATIONS, 2021, 2021 (01)
  • [4] On Nonlinear Hybrid Fractional Differential Equations with Atangana-Baleanu-Caputo Derivative
    Sutar, Sagar T.
    Kucche, Kishor D.
    CHAOS SOLITONS & FRACTALS, 2021, 143
  • [5] On numerical approximation of Atangana-Baleanu-Caputo fractional integro-differential equations under uncertainty in Hilbert Space
    Al-Smadi, Mohammed
    Dutta, Hemen
    Hasan, Shatha
    Momani, Shaher
    MATHEMATICAL MODELLING OF NATURAL PHENOMENA, 2021, 16 (16)
  • [6] Analysis of nonlinear fractional differential equations involving Atangana-Baleanu-Caputo derivative
    Kucche, Kishor D.
    Sutar, Sagar T.
    CHAOS SOLITONS & FRACTALS, 2021, 143
  • [7] Analysis of the fractional diffusion equations described by Atangana-Baleanu-Caputo fractional derivative
    Sene, Ndolane
    Abdelmalek, Karima
    CHAOS SOLITONS & FRACTALS, 2019, 127 : 158 - 164
  • [8] Atangana-Baleanu-Caputo differential equations with mixed delay terms and integral boundary conditions
    Filali, D.
    Ali, Arshad
    Ali, Zeeshan
    Akram, M.
    Dilshad, M.
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2023, 46 (09) : 10435 - 10449
  • [9] Existence and Stability for a Coupled Hybrid System of Fractional Differential Equations with Atangana-Baleanu-Caputo Derivative
    Zhao, Liyuan
    Jiang, Yirong
    JOURNAL OF MATHEMATICS, 2022, 2022
  • [10] Numerical Solution Of Fractional Model Of Atangana-Baleanu-Caputo Integrodifferential Equations With Integral Boundary Conditions
    Alneimat, Mohammad
    Moakher, Maher
    Djeddi, Nadir
    Al-Omari, Shrideh
    APPLIED MATHEMATICS E-NOTES, 2023, 23 : 146 - 158