Design, Fabrication, and Determination of the Optimum Working Conditions of a Peanut (Arachis hypogaea L.) Pneumatic Bagging System

被引:0
|
作者
Ugurluay, Selcuk [1 ]
Somay, Ali [1 ]
机构
[1] Hatay Mustafa Kemal Univ, Fac Agr, Dept Biosyst Engn, TR-31120 Hatay, Turkiye
来源
PHILIPPINE AGRICULTURAL SCIENTIST | 2024年 / 107卷 / 01期
关键词
peanut; postharvest processes; bagging; prototype machine; working capacity; CONVEYING CHARACTERISTICS; PHYSICAL-PROPERTIES; VELOCITY;
D O I
暂无
中图分类号
S [农业科学];
学科分类号
09 ;
摘要
The peanut bagging process is not mechanized, it requires a large amount of human labor. In addition, the shovel or canister used in bagging breaks the peanut shell that causes losses. The purpose of this study is to reduce the required workforce by mechanizing the peanut bagging process, and to determine the optimum working criteria (hose diameter and air velocity) of the prototype machine. A peanut pneumatic bagging machine powered by a tractor power takeoff (PTO) was designed and fabricated to convey peanut pods from the ground and fill the product into the bags. To determine the optimum working conditions of the machine, tests are conducted using three hose diameters (100, 120, and 160 mm) and three air speeds (23, 25, and 27 m s(-1)). Machine work capacity, fuel consumption, and physical product damage were identified. The terminal velocity value of the peanut pods was calculated as 14.48 +/- 2.08 m s(-1). Air speed twice the terminal velocity was applied to prevent pressure drop in the transport pipe and ensure flow continuity. The hose with a diameter of 160 mm give the highest work capacity and the lowest fuel consumption. The air velocity of 27 m s(-1) in the hose was the most successful in terms of both work capacity and fuel consumption. No product damage was verified during the trials, and the prototype machine was found to be effective for the peanut bagging process.
引用
收藏
页码:20 / 28
页数:9
相关论文
共 50 条
  • [21] PHOTOCONTROL OF PEANUT (ARACHIS HYPOGAEA L.) OVULE DEVELOPMENT IN VITRO
    Thompson, L. K.
    Ziv, M.
    Deitzer, G. F.
    PLANT PHYSIOLOGY, 1984, 75 : 79 - 79
  • [22] Purification and characterization of a chitinase from peanut (Arachis hypogaea L.)
    Wang, Shaoyun
    Shao, Biao
    Ye, Xiuyun
    Rao, Pingfran
    JOURNAL OF FOOD BIOCHEMISTRY, 2008, 32 (01) : 32 - 45
  • [23] Microsatellites as DNA markers in cultivated peanut (Arachis hypogaea L.)
    Guohao He
    Ronghua Meng
    Melanie Newman
    Guoqing Gao
    Roy N Pittman
    CS Prakash
    BMC Plant Biology, 3 (1)
  • [24] Transcriptome analysis of alternative splicing in peanut (Arachis hypogaea L.)
    Ruan, Jian
    Guo, Feng
    Wang, Yingying
    Li, Xinguo
    Wan, Shubo
    Shan, Lei
    Peng, Zhenying
    BMC PLANT BIOLOGY, 2018, 18
  • [25] Transcriptome analysis of alternative splicing in peanut (Arachis hypogaea L.)
    Jian Ruan
    Feng Guo
    Yingying Wang
    Xinguo Li
    Shubo Wan
    Lei Shan
    Zhenying Peng
    BMC Plant Biology, 18
  • [26] Physicochemical properties of new peanut (Arachis hypogaea L.) varieties
    Zahran, Hamdy A.
    Tawfeuk, Hesham Z.
    OCL-OILSEEDS AND FATS CROPS AND LIPIDS, 2019, 26
  • [27] Uptake and partitioning of cadmium by cultivars of peanut (Arachis hypogaea L.)
    McLaughlin, MJ
    Bell, MJ
    Wright, GC
    Cozens, GD
    PLANT AND SOIL, 2000, 222 (1-2) : 51 - 58
  • [28] Development of chloroplast genome resources for peanut (Arachis hypogaea L.) and other species of Arachis
    Yin, Dongmei
    Wang, Yun
    Zhang, Xingguo
    Ma, Xingli
    He, Xiaoyan
    Zhang, Jianhang
    SCIENTIFIC REPORTS, 2017, 7
  • [29] Distribution of allergen composition in peanut (Arachis hypogaea L.) and wild progenitor (Arachis) species
    Kang, Il-Ho
    Gallo, Maria
    Tillman, Barry L.
    CROP SCIENCE, 2007, 47 (03) : 997 - 1003
  • [30] Development of chloroplast genome resources for peanut (Arachis hypogaea L.) and other species of Arachis
    Dongmei Yin
    Yun Wang
    Xingguo Zhang
    Xingli Ma
    Xiaoyan He
    Jianhang Zhang
    Scientific Reports, 7