Machine learning for predicting liver and/or lung metastasis in colorectal cancer: A retrospective study based on the SEER database

被引:10
作者
Guo, Zhentian [1 ,2 ]
Zhang, Zongming [1 ,2 ]
Liu, Limin [1 ,2 ]
Zhao, Yue [1 ,2 ]
Liu, Zhuo [1 ,2 ]
Zhang, Chong [1 ,2 ]
Qi, Hui [1 ,2 ]
Feng, Jinqiu [2 ,3 ]
Yang, Chunmin [4 ]
Tai, Weiping [5 ]
Banchini, Filippo [6 ]
Inchingolo, Riccardo [7 ]
机构
[1] Capital Med Univ, Beijing Elect Power Hosp, Dept Gen Surg, State Grid Corp China, Beijing 100073, Peoples R China
[2] China Gen Technol Grp, Key Lab Geriatr Hepatobiliary Dis, Beijing 100073, Peoples R China
[3] Peking Univ, Sch Basic Med Sci, Dept Immunol, Beijing 100191, Peoples R China
[4] Capital Med Univ, Beijing Elect Power Hosp, Dept Gastroenterol, State Grid Corp China, Beijing 100073, Peoples R China
[5] Capital Med Univ, Beijing Shijitan Hosp, Dept Gastroenterol, Beijing 100038, Peoples R China
[6] Guglielmo da Saliceto Hosp, Gen Surg Unit, Piacenza, Italy
[7] F Miulli Reg Gen Hosp, Intervent Radiol Unit, I-70021 Acquaviva Delle Fonti, Italy
来源
EJSO | 2024年 / 50卷 / 07期
关键词
Machine learning; Colorectal cancer; Liver and/or lung metastasis; CARCINOEMBRYONIC ANTIGEN; COLON-CANCER; TUMOR DEPOSITS; RESECTION; SURVIVAL; INDICATOR; PATTERN;
D O I
10.1016/j.ejso.2024.108362
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
Objective: This study aims to establish a machine learning (ML) model for predicting the risk of liver and/or lung metastasis in colorectal cancer (CRC). Methods: Using the National Institutes of Health (NIH)'s Surveillance, Epidemiology, and End Results (SEER) database, a total of 51265 patients with pathological diagnosis of colorectal cancer from 2010 to 2015 were extracted for model development. On this basis, We have established 7 machine learning algorithm models. Evaluate the model based on accuracy, and AUC of receiver operating characteristics (ROC) and explain the relationship between clinical pathological features and target variables based on the best model. We validated the model among 196 colorectal cancer patients in Beijing Electric Power Hospital of Capital Medical University of China to evaluate its performance and universality. Finally, we have developed a network-based calculator using the best model to predict the risk of liver and/or lung metastasis in colorectal cancer patients. Results: 51265 patients were enrolled in the study, of which 7864 (15.3 %) had distant liver and/or lung metastasis. RF had the best predictive ability, In the internal test set, with an accuracy of 0.895, AUC of 0.956, and AUPR of 0.896. In addition, the RF model was evaluated in the external validation set with an accuracy of 0.913, AUC of 0.912, and AUPR of 0.611. Conclusion: In this study, we constructed an RF algorithm mode to predict the risk of colorectal liver and/or lung metastasis, to assist doctors in making clinical decisions.
引用
收藏
页数:9
相关论文
共 62 条
[1]   Carcinoembryonic antigen-stimulated THP-1 macrophages activate endothelial cells and increase cell-cell adhesion of colorectal cancer cells [J].
Aarons, Cary B. ;
Bajenova, Olga ;
Andrews, Charles ;
Heydrick, Stanley ;
Bushell, Kristen N. ;
Reed, Karen L. ;
Thomas, Peter ;
Becker, James M. ;
Stucchi, Arthur F. .
CLINICAL & EXPERIMENTAL METASTASIS, 2007, 24 (03) :201-209
[2]   Predicting Colorectal Cancer Recurrence and Patient Survival Using Supervised Machine Learning Approach: A South African Population-Based Study [J].
Achilonu, Okechinyere J. ;
Fabian, June ;
Bebington, Brendan ;
Singh, Elvira ;
Eijkemans, M. J. C. ;
Musenge, Eustasius .
FRONTIERS IN PUBLIC HEALTH, 2021, 9
[3]   Role of surgery in colorectal cancer liver metastases [J].
Akgul, Ozgur ;
Cetinkaya, Erdinc ;
Ersoz, Siyar ;
Tez, Mesut .
WORLD JOURNAL OF GASTROENTEROLOGY, 2014, 20 (20) :6113-6122
[4]   Multiple Myeloma, Version 2.2016 [J].
Anderson, Kenneth C. ;
Alsina, Melissa ;
Atanackovic, Djordje ;
Biermann, J. Sybil ;
Chandler, Jason C. ;
Costello, Caitlin ;
Djulbegovic, Benjamin ;
Fung, Henry C. ;
Gasparetto, Cristina ;
Godby, Kelly ;
Hofmeister, Craig ;
Holmberg, Leona ;
Holstein, Sarah ;
Huff, Carol Ann ;
Kassim, Adetola ;
Krishnan, Amrita Y. ;
Kumar, Shaji K. ;
Liedtke, Michaela ;
Lunning, Matthew ;
Raje, Noopur ;
Singhal, Seema ;
Smith, Clayton ;
Somlo, George ;
Stockerl-Goldstein, Keith ;
Treon, Steven P. ;
Weber, Donna ;
Yahalom, Joachim ;
Shead, Dorothy A. ;
Kumar, Rashmi .
JOURNAL OF THE NATIONAL COMPREHENSIVE CANCER NETWORK, 2015, 13 (11) :1398-1435
[5]   Region-income-based prioritisation of Sustainable Development Goals by Gradient Boosting Machine [J].
Asadikia, Atie ;
Rajabifard, Abbas ;
Kalantari, Mohsen .
SUSTAINABILITY SCIENCE, 2022, 17 (05) :1939-1957
[6]   Application of interpretable machine learning algorithms to predict distant metastasis in osteosarcoma [J].
Bai, Bing-li ;
Wu, Zong-yi ;
Weng, She-ji ;
Yang, Qing .
CANCER MEDICINE, 2023, 12 (04) :5025-5034
[7]   Tumor deposit is an independent prognostic indicator in patients who underwent radical resection for colorectal cancer [J].
Basnet, Shiva ;
Lou, Qi-feng ;
Liu, Nan ;
Rana, Ramesh ;
Shah, Abilasha ;
Khadka, Mamata ;
Warrier, Hemanshu ;
Sigdel, Shushil ;
Dhakal, Sunil ;
Devkota, Anita ;
Mishra, Roshan ;
Sapkota, Ganga ;
Zheng, Liang ;
Ge, Hai-yan .
JOURNAL OF CANCER, 2018, 9 (21) :3979-3985
[8]   Evaluating the Prognostic Role of Elevated Preoperative Carcinoembryonic Antigen Levels in Colon Cancer Patients: Results from the National Cancer Database [J].
Becerra, Adan Z. ;
Probst, Christian P. ;
Tejani, Mohamedtaki A. ;
Aquina, Christopher T. ;
Gonzalez, Maynor G. ;
Hensley, Bradley J. ;
Noyes, Katia ;
Monson, John R. ;
Fleming, Fergal J. .
ANNALS OF SURGICAL ONCOLOGY, 2016, 23 (05) :1554-1561
[9]  
Bray F, 2018, CA-CANCER J CLIN, V68, P394, DOI [10.3322/caac.21492, 10.3322/caac.21609]
[10]   Tumor deposits improve staging in colon cancer: what are the next steps? [J].
Brouwer, N. P. M. ;
Nagtegaal, I. D. .
ANNALS OF ONCOLOGY, 2021, 32 (10) :1209-1211