Stabilization-free virtual element method for 3D hyperelastic problems

被引:2
作者
Xu, Bing-Bing [1 ]
Peng, Fan [2 ]
Wriggers, Peter [1 ]
机构
[1] Leibniz Univ Hannover, Inst Continuum Mech, D-30823 Hannover, Niedersachsen, Germany
[2] Changan Univ, Sch Sci, Xian 710064, Shaanxi, Peoples R China
关键词
Virtual element method; Stabilization free; Elastoplasticity; Nonlinear problems; MESHES;
D O I
10.1007/s00466-024-02501-4
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this work, we present a first-order stabilization-free virtual element method (SFVEM) for three-dimensional hyperelastic problems. Different from the conventional virtual element method, which necessitates additional stabilization terms in the bilinear formulation, the method developed in this work operates without the need for any stabilization. Consequently, it proves highly suitable for the computation of nonlinear problems. The stabilization-free virtual element method has been applied in two-dimensional hyperelasticity and three-dimensional elasticity problems. In this work, the format will be applied to three-dimensional hyperelasticity problems for the first time. Similar to the techniques used in the two-dimensional stabilization-free virtual element method, the new virtual element space is modified to allow the computation of the higher-order L 2 \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L_2$$\end{document} projection of the gradient. This paper reviews the calculation process of the traditional H 1 \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {H}_1$$\end{document} projection operator; and describes in detail how to calculate the high-order L 2 \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L_2$$\end{document} projection operator for three-dimensional problems. Based on this high-order L 2 \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L_2$$\end{document} projection operator, this paper extends the method to more complex three-dimensional nonlinear problems. Some benchmark problems illustrate the capability of the stabilization-free VEM for three-dimensional hyperelastic problems.
引用
收藏
页码:1687 / 1701
页数:15
相关论文
共 46 条
  • [1] Equivalent projectors for virtual element methods
    Ahmad, B.
    Alsaedi, A.
    Brezzi, F.
    Marini, L. D.
    Russo, A.
    [J]. COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2013, 66 (03) : 376 - 391
  • [2] Curvilinear virtual elements for contact mechanics
    Aldakheel, Fadi
    Hudobivnik, Blaz
    Artioli, Edoardo
    da Veiga, Lourenco Beirao
    Wriggers, Peter
    [J]. COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2020, 372
  • [3] VIRTUAL ELEMENT FORMULATION FOR PHASE-FIELD MODELING OF DUCTILE FRACTURE
    Aldakheel, Fadi
    Hudobivnik, Blai
    Wriggers, Peter
    [J]. INTERNATIONAL JOURNAL FOR MULTISCALE COMPUTATIONAL ENGINEERING, 2019, 17 (02) : 181 - 200
  • [4] Arbitrary order 2D virtual elements for polygonal meshes: part I, elastic problem
    Artioli, E.
    da Veiga, L. Beirao
    Lovadina, C.
    Sacco, E.
    [J]. COMPUTATIONAL MECHANICS, 2017, 60 (03) : 355 - 377
  • [5] A first-order stabilization-free Virtual Element Method
    Berrone, Stefano
    Borio, Andrea
    Marcon, Francesca
    Teora, Gioana
    [J]. APPLIED MATHEMATICS LETTERS, 2023, 142
  • [6] Berrone S, 2022, Arxiv, DOI arXiv:2103.16896
  • [7] Stabilization-free virtual element method for plane elasticity
    Chen, Alvin
    Sukumar, N.
    [J]. COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2023, 138 : 88 - 105
  • [8] Stabilization-free serendipity virtual element method for plane elasticity
    Chen, Alvin
    Sukumar, N.
    [J]. COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2023, 404
  • [9] Some basic formulations of the virtual element method (VEM) for finite deformations
    Chi, H.
    da Veiga, L. Beirao
    Paulino, G. H.
    [J]. COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2017, 318 : 148 - 192
  • [10] A virtual element method for 3D contact problems with non-conforming meshes
    Cihan, Mertcan
    Hudobivnik, Blaz
    Korelc, Joze
    Wriggers, Peter
    [J]. COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2022, 402