Evaluation of artificial intelligence-assisted morphological analysis for platelet count estimation

被引:1
作者
Guo, Ping [1 ]
Zhang, Chi [2 ]
Liu, Dandan [3 ]
Sun, Ziyong [2 ]
He, Jun [3 ]
Wang, Jianbiao [1 ]
机构
[1] Shanghai Jiao Tong Univ, Ruijin Hosp, Sch Med, Clin Lab, Shanghai, Peoples R China
[2] Huazhong Univ Sci & Technol, Tongji Hosp, Tongji Med Coll, Clin Lab, Wuhan, Peoples R China
[3] Soochow Univ, Affiliated Hosp 1, Clin Lab, Suzhou, Peoples R China
关键词
artificial intelligence; digital morphology analyzer; method comparison; platelet count estimation; CELL; DIAGNOSIS;
D O I
10.1111/ijlh.14345
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
Introduction: This study aims to assess the performance of the platelet count estimation using artificial intelligence technology on the MC-80 digital morphology analyzer. Methods: Digital morphology analyzer uses two different computational principles for platelet count estimation: based on PLT/RBC ratio (PLT-M1) and estimate factor (PLT-M2). 977 samples with various platelet counts (low, median, and high) were collected. Out of these, 271 samples were immunoassayed using CD61 and CD41 antibodies. The platelet counts obtained from the hematology analyzer (PLT-I and PLT-O), digital morphology analyzer (PLT-M1 and PLT-M2), and flow cytometry (PLT-IRM) were compared. Results: There was no significant deviation observed before and after verification for both PLT-M1 and PLT-M2 across the analysis range (average bias: -0.845/-0.682, 95% limit of agreement (LOA): -28.675-26.985/-29.420-28.056). When platelet alarms appeared, PLT-M1/PLT-M2 showed the strongest correlation with PLT-IRM than PLT-I with PLT-IRM (r: 0.9814/0.9796 > 0.9601). The correlation between PLT-M1/PLT-M2 and PLT-IRM was strong for samples with interference, such as large platelets or RBC fragments, but relatively weak in small RBCs. The deviation between PLT-M1 and PLT-M2 is related to the number of RBCs. Compared with PLT-I, PLT-M1/PLT-M2 showed higher accuracy for platelet transfusion decisions, especially for samples with low-value PLT. Conclusion: The novel platelet count estimation on the MC-80 digital morphology analyzer provides high accuracy, especially the reviewed result, which can effectively confirm suspicious platelet count.
引用
收藏
页码:1012 / 1020
页数:9
相关论文
共 29 条
  • [1] Platelet Counting: Ugly Traps and Good Advice. Proposals from the French-Speaking Cellular Hematology Group (GFHC)
    Baccini, Veronique
    Genevieve, Franck
    Jacqmin, Hugues
    Chatelain, Bernard
    Girard, Sandrine
    Wuilleme, Soraya
    Vedrenne, Aurelie
    Guiheneuf, Eric
    Toussaint-Hacquard, Marie
    Everaere, Fanny
    Soulard, Michel
    Lesesve, Jean-Francois
    Bardet, Valerie
    [J]. JOURNAL OF CLINICAL MEDICINE, 2020, 9 (03)
  • [2] Barnes P W, 2005, Lab Hematol, V11, P83, DOI 10.1532/LH96.05019
  • [3] Swarm Intelligence-Enhanced Detection of Non-Small-Cell Lung Cancer Using Tumor-Educated Platelets
    Best, Myron G.
    Sol, Nik
    't Veld, Sjors G. J. G. In
    Vancura, Adrienne
    Muller, Mirte
    Niemeijer, Anna-Larissa N.
    Fejes, Aniko V.
    Fat, Lee-Ann Tjon Kon
    't Veld, Anna E. Huis In
    Leurs, Cyra
    Le Large, Tessa Y.
    Meijer, Laura L.
    Kooi, Irsan E.
    Rustenburg, Francois
    Schellen, Pepijn
    Verschueren, Heleen
    Post, Edward
    Wedekind, Laurine E.
    Bracht, Jillian
    Esenkbrink, Michelle
    Wils, Leon
    Favaro, Francesca
    Schoonhoven, Jilian D.
    Tannous, Jihane
    Meijers-Heijboer, Hanne
    Kazemier, Geert
    Giovannetti, Elisa
    Reijneveld, Jaap C.
    Idema, Sander
    Killestein, Joep
    Heger, Michal
    de Jager, Saskia C.
    Urbanus, Rolf T.
    Hoefer, Imo E.
    Pasterkamp, Gerard
    Mannhalter, Christine
    Gomez-Arroyo, Jose
    Bogaard, Harm-Jan
    Noske, David P.
    Vandertop, W. Peter
    van den Broek, Daan
    Ylstra, Bauke
    Nilsson, R. Jonas A.
    Wesseling, Pieter
    Karachaliou, Niki
    Rosell, Rafael
    Lee-Lewandrowski, Elizabeth
    Lewandrowski, Kent B.
    Tannous, Bakhos A.
    de Langen, Adrianus J.
    [J]. CANCER CELL, 2017, 32 (02) : 238 - +
  • [4] Multicenter evaluation of the cobas m 511 integrated hematology analyzer
    Bruegel, Mathias
    George, Tracy I.
    Feng, Bo
    Allen, Timothy R.
    Bracco, Dan
    Zahniser, David J.
    Russcher, Henk
    [J]. INTERNATIONAL JOURNAL OF LABORATORY HEMATOLOGY, 2018, 40 (06) : 672 - 682
  • [5] The Wnt Antagonist Dickkopf-1 Promotes Pathological Type 2 Cell-Mediated Inflammation
    Chae, Wook-Jin
    Ehrlich, Allison K.
    Chan, Pamela Y.
    Teixeira, Alexandra M.
    Henegariu, Octavian
    Hao, Liming
    Shin, Jae Hun
    Park, Jong-Hyun
    Tang, Wai Ho
    Kim, Sang-Taek
    Maher, Stephen E.
    Goldsmith-Pestana, Karen
    Shan, Peiying
    Hwa, John
    Lee, Patty J.
    Krause, Diane S.
    Rothlin, Carla V.
    McMahon-Pratt, Diane
    Bothwell, Alfred L. M.
    [J]. IMMUNITY, 2016, 44 (02) : 246 - 258
  • [6] CLSI, MEASUREMENT PROCEDUR
  • [7] Platelets at the interface of thrombosis, inflammation, and cancer
    Franco, Aime T.
    Corken, Adam
    Ware, Jerry
    [J]. BLOOD, 2015, 126 (05) : 582 - 588
  • [8] Platelet-Monocyte Aggregates: Understanding Mechanisms and Functions in Sepsis
    Fu, Guang
    Deng, Meihong
    Neal, Matthew D.
    Billiar, Timothy R.
    Scott, Melanie J.
    [J]. SHOCK, 2021, 55 (02): : 156 - 166
  • [9] Preterm neonates benefit from low prophylactic platelet transfusion threshold despite varying risk of bleeding or death
    Fustolo-Gunnink, Susanna F.
    Fijnvandraat, Karin
    van Klaveren, David
    Stanworth, Simon J.
    Curley, Anna
    Onland, Wes
    Steyerberg, Ewout W.
    de Kort, Ellen
    d'Haens, Esther J.
    Hulzebos, Christian V.
    Huisman, Elise J.
    de Boode, Willem P.
    Lopriore, Enrico
    van der Bom, Johanna G.
    [J]. BLOOD, 2019, 134 (26) : 2354 - 2360
  • [10] Gao Yuon, 2013, J Pathol Inform, V4, P16, DOI 10.4103/2153-3539.114207