Environmental DNA metabarcoding reveals temporal dynamics but functional stability of arthropod communities in cattle dung

被引:1
作者
Thomassen, Emil Ellegaard [1 ]
Sigsgaard, Eva Egelyng [1 ]
Jensen, Mads Reinholdt [1 ,2 ]
Olsen, Kent [3 ]
Hansen, Morten D. D. [3 ]
Thomsen, Philip Francis [1 ]
机构
[1] Aarhus Univ, Dept Biol, Aarhus, Denmark
[2] Arctic Univ Norway, Norwegian Coll Fishery Sci, UiT, Tromso, Norway
[3] Nat Hist Museum Aarhus, Dept Res & Collect, Aarhus, Denmark
关键词
arthropods; cattle dung; colonization; dung beetles; dung degradation; ecosystem functions; eDNA metabarcoding; succession; COLONIZATION; SUCCESSION; BEETLES; SIZE; DECOMPOSITION; COLEOPTERA; DIVERSITY; ABUNDANCE; INSECTS; DECLINE;
D O I
10.1111/1365-2656.14119
中图分类号
Q14 [生态学(生物生态学)];
学科分类号
071012 ; 0713 ;
摘要
Terrestrial invertebrates are highly important for the decomposition of dung from large mammals. Mammal dung has been present in many of Earth's ecosystems for millions of years, enabling the evolution of a broad diversity of dung-associated invertebrates that process various components of the dung. Today, large herbivorous mammals are increasingly introduced to ecosystems with the aim of restoring the ecological functions formerly provided by their extinct counterparts. However, we still know little about the ecosystem functions and nutrient flows in these rewilded ecosystems, including the dynamics of dung decomposition. In fact, the succession of insect communities in dung is an area of limited research attention also outside a rewilding context. In this study, we use environmental DNA metabarcoding of dung from rewilded Galloway cattle in an experimental set-up to investigate invertebrate communities and functional dynamics over a time span of 53 days, starting from the time of deposition. We find a strong signal of successional change in community composition, including for the species that are directly dependent on dung as a resource. While several of these species were detected consistently across the sampling period, others appeared confined to either early or late successional stages. We believe that this is indicative of evolutionary adaptation to a highly dynamic resource, with species showing niche partitioning on a temporal scale. However, our results show consistently high species diversity within the functional groups that are directly dependent on dung. Our findings of such redundancy suggest functional stability of the dung-associated invertebrate community, with several species ready to fill vacant niches if other species disappear. Importantly, this might also buffer the ecosystem functions related to dung decomposition against environmental change. Interestingly, alpha diversity peaked after approximately 20-25 days in both meadow and pasture habitats, and did not decrease substantially during the experimental period, probably due to preservation of eDNA in the dung after the disappearance of visiting invertebrates, and from detection of tissue remains and cryptic life stages.
引用
收藏
页码:1003 / 1021
页数:19
相关论文
共 76 条
  • [1] Scrutinizing key steps for reliable metabarcoding of environmental samples
    Alberdi, Antton
    Aizpurua, Ostaizka
    Gilbert, M. Thomas P.
    Bohmann, Kristine
    [J]. METHODS IN ECOLOGY AND EVOLUTION, 2018, 9 (01): : 134 - 147
  • [2] MARES, a replicable pipeline and curated reference database for marine eukaryote metabarcoding
    Arranz, Vanessa
    Pearman, William S.
    Aguirre, J. David
    Liggins, Libby
    [J]. SCIENTIFIC DATA, 2020, 7 (01)
  • [3] Barclay M., 2023, BEETLES WORLD, DOI [10.2307/j.ctv2v55gtw.17, DOI 10.2307/J.CTV2V55GTW.17]
  • [4] Applications of environmental DNA (eDNA) in ecology and conservation: opportunities, challenges and prospects
    Beng, Kingsly C.
    Corlett, Richard T.
    [J]. BIODIVERSITY AND CONSERVATION, 2020, 29 (07) : 2089 - 2121
  • [5] Does functional redundancy affect ecological stability and resilience? A review and meta-analysis
    Biggs, Christopher R.
    Yeager, Lauren A.
    Bolser, Derek G.
    Bonsell, Christina
    Dichiera, Angelina M.
    Hou, Zhenxin
    Keyser, Spencer R.
    Khursigara, Alexis J.
    Lu, Kaijun
    Muth, Arley F.
    Negrete, Benjamin, Jr.
    Erisman, Brad E.
    [J]. ECOSPHERE, 2020, 11 (07):
  • [6] Improving the reliability of eDNA data interpretation
    Burian, Alfred
    Mauvisseau, Quentin
    Bulling, Mark
    Domisch, Sami
    Qian, Song
    Sweet, Michael
    [J]. MOLECULAR ECOLOGY RESOURCES, 2021, 21 (05) : 1422 - 1433
  • [7] Byk A., 2018, DUNG BEETLES THEIR R, DOI [10.24131/3247.180103, DOI 10.24131/3247.180103]
  • [8] Callahan BJ, 2016, NAT METHODS, V13, P581, DOI [10.1038/nmeth.3869, 10.1038/NMETH.3869]
  • [9] Inferring species decline from collection records: roller dung beetles in Italy (Coleoptera, Scarabaeidae)
    Carpaneto, Giuseppe Maria
    Mazziotta, Adriano
    Valerio, Laura
    [J]. DIVERSITY AND DISTRIBUTIONS, 2007, 13 (06) : 903 - 919
  • [10] Coissac Eric, 2012, Methods Mol Biol, V888, P13, DOI 10.1007/978-1-61779-870-2_2