Orthogonal polynomials on domains of revolution

被引:0
作者
Xu, Yuan [1 ]
机构
[1] Univ Oregon, Dept Math, Eugene, OR 97403 USA
关键词
addition formula; domains of revolution; orthogonal polynomials; spectral operator; WEIGHT;
D O I
10.1111/sapm.12703
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study orthogonal polynomials (OPs) for a weight function defined over a domain of revolution, where the domain is formed from rotating a two-dimensional region and goes beyond the quadratic domains. Explicit constructions of orthogonal bases are provided for weight functions on a number of domains. Particular attention is paid to the setting when an orthogonal basis can be constructed explicitly in terms of known polynomials of either one or two variables. Several new families of OPs are derived, including a few families that are eigenfunctions of a spectral operator and their reproducing kernels satisfy an addition formula.
引用
收藏
页数:45
相关论文
共 19 条
[1]  
Agahanov S.A., 1965, VESTNIK LENINGRAD U, V20, P5
[2]   Three term recurrence for the evaluation of multivariate orthogonal polynomials [J].
Barrio, Roberto ;
Manuel Pena, Juan ;
Sauer, Tomas .
JOURNAL OF APPROXIMATION THEORY, 2010, 162 (02) :407-420
[3]  
Dai F., 2013, APPROXIMATION THEORY, DOI [10.1007/978-1-4614-6660-4, DOI 10.1007/978-1-4614-6660-4]
[4]  
Dunkl C.F., 2001, Orthogonal polynomials of several variables
[5]  
Koornwinder T., 1975, THEORY APPL SPECIAL, P435, DOI [10.1016/B978-0-12-064850-4.50015-X, DOI 10.1016/B978-0-12-064850-4.50015-X]
[6]  
Krall HL., 1967, Annali di Matematica Pura ed Applicata, V76, P325, DOI DOI 10.1007/BF02412238
[7]   A STIELTJES ALGORITHM FOR GENERATING MULTIVARIATE ORTHOGONAL POLYNOMIALS [J].
Liu, Zexin ;
Narayandagger, Akil .
SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2023, 45 (03) :A1125-A1147
[8]  
OLVER S., 2020, Spectral and High Order Methods for Partial Differential Equations ICOSAHOM 2018, P79, DOI DOI 10.1007/978-3-030-39647-3_5
[9]   ORTHOGONAL POLYNOMIALS IN AND ON A QUADRATIC SURFACE OF REVOLUTION [J].
Olver, Sheehan ;
Xu, Yuan .
MATHEMATICS OF COMPUTATION, 2020, 89 (326) :2847-2865
[10]   Fast algorithms using orthogonal polynomials [J].
Olver, Sheehan ;
Slevinsky, Richard Mikael ;
Townsend, Alex .
ACTA NUMERICA, 2020, 29 :573-699