The dehydration mechanism of Na and K birnessites: a comprehensive multitechnique study

被引:0
作者
Andre, E. [1 ]
Cornu, D. [1 ]
Perez Ramirez, L. [2 ,3 ]
Durand, P. [4 ]
Gallet, J. -j. [2 ,3 ]
Bournel, F. [2 ,3 ]
Rochet, F. [2 ,3 ]
Ruby, C. [1 ]
Carteret, C. [1 ]
Coustel, R. [1 ]
机构
[1] Univ Lorraine, CNRS, LCPME, F-54000 Nancy, France
[2] Sorbonne Univ, CNRS UMR 7614, Lab Chim Phys Matiere & Rayonnement, F-75252 Paris 05, France
[3] Synchrotron SOLEIL, Orme Merisiers, F-91192 Gif Sur Yvette, France
[4] Univ Lorraine, CNRS, CRM2, F-54000 Nancy, France
关键词
HYDROTHERMAL SYNTHESIS; OXIDATION; WATER;
D O I
10.1039/d4dt00588k
中图分类号
O61 [无机化学];
学科分类号
070301 ; 081704 ;
摘要
The structural, spectroscopic and electronic properties of Na and K birnessites were investigated from ambient conditions (birA) to complete dehydration, and the involved mechanisms were scrutinized. Density Functional Theory (DFT) simulations were employed to derive structural models for lamellar A0.33MnO2<middle dot>xH2O (A = Na+ or K+, x = 0 or 0.66), subsequently compared with the experimental results obtained for Na0.30MnO2<middle dot>0.75H2O and K0.22MnO2<middle dot>0.77H2O materials. Thermal analysis (TGA-DSC), X-ray diffraction (XRD), Fourier Transform Infrared (FTIR) spectroscopy, and Near Ambient Pressure X-ray Photoemission Spectroscopy (NAP-XPS) measurements were conducted for both birnessites. Dehydration under vacuum, annealing, or controlled relative humidity were considered. Results indicated that complete birnessite dehydration was a two-stage process. In the first stage, water removal from the interlayer of fully hydrated birnessite (birA) down to a molar H2O/A ratio of similar to 2 (birB) led to the progressive shrinkage of the interlayer distance (3% for Na birnessite, 1% for K birnessite). In the second stage, water-free (birC) domains with a shorter interlayer distance (20% for Na birnessite, 10% for K birnessite) appeared and coexisted with birB domains. Then, birB was essentially transformed into birC when complete dehydration was achieved. The vibrational properties of birA were consistent with strong intermolecular interactions among water molecules, whereas partially dehydrated birnessite (birB) showed a distinct feature, with 3 (for Na-bir) and 2 (for K-bir) vibrations that were reproduced by DFT calculations for organized water into the interlayer (x = 0.66). The study also demonstrated that the electronic structure of Na birnessite depends on the interlayer water content. The external Na+ electronic level (Na 2p) was slightly destabilized (+0.3 eV binding energy) under near ambient conditions (birA) compared to drier conditions (birB and birC). The structural, spectroscopic and electronic properties of Na and K birnessites were investigated from ambient conditions to complete dehydration, and the involved mechanisms were scrutinized.
引用
收藏
页码:9952 / 9963
页数:12
相关论文
empty
未找到相关数据