Crossing numbers of complete bipartite graphs

被引:1
作者
Balogh, Jozsef [1 ]
Lidicky, Bernard [2 ]
Norin, Sergey [3 ]
Pfender, Florian [4 ]
Salazar, Gelasio [5 ]
Spiro, Sam [6 ]
机构
[1] Univ Illinois, Dept Math Sci, Urbana, IL 61801 USA
[2] Iowa State Univ, Dept Math, Ames, IA 50011 USA
[3] McGill Univ, Dept Math & Stat, Montreal, PQ H3A 0B9, Canada
[4] Univ Colorado, Dept Math & Stat Sci, Denver, CO 80204 USA
[5] Univ Autonoma San Luis Potosi, Inst Fis, San Luis Potosi 78000, San Luis Potosi, Mexico
[6] Rutgers State Univ, Dept Math, Piscataway, NJ 08854 USA
来源
XII LATIN-AMERICAN ALGORITHMS, GRAPHS AND OPTIMIZATION SYMPOSIUM, LAGOS 2023 | 2023年 / 224卷
基金
美国国家科学基金会;
关键词
Zarankiewicz; crossing number; complete bipartite graph; flag algebras;
D O I
10.1016/j.procs.2023.08.216
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
The long standing Zarankiewicz's conjecture states that the crossing number cr(K-m,K-n) of the complete bipartite graph is Z(m,n) := left perpendicular m/2right perpendicular left perpendicular m-1/2 right perpendicular left perpendicular n/2 right perpendicular left perpendicular n-1/2 right perpendicular. Using flag algebras we show that cr(K-n,K-n) >= 0.9118 Z(n, n) + o(n(4)). We also show that the rectilinear crossing number (cr) over bar (K-n,K-n) of K-n,K-n is at least 0.987 . Z(n,n) + o(n(4)). Finally, we show that if a drawing of K-n,K-n has no K-3,K-4 that has exactly two crossings, and these crossings share exactly one vertex, then it has at least Z(n,n) + o(n(4)) crossings. This is a local restriction inspired by Turan type problems that gives an asymptotically tight result. (C) 2023 The Authors. Published by Elsevier B.V.
引用
收藏
页码:78 / 87
页数:10
相关论文
共 24 条
[1]  
Aichholzer O., 2006, Enumerating order types for small point sets with applications
[2]  
[Anonymous], 1969, PROOF TECHNIQUES GRA, P63
[3]  
Baber R., 2011, Some results in extremal combinatorics
[4]   Solving Turan's tetrahedron problem for the l2$\ell _2$-norm [J].
Balogh, Jozsef ;
Clemen, Felix Christian ;
Lidicky, Bernard .
JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 2022, 106 (01) :60-84
[5]   CLOSING IN ON HILL'S CONJECTURE [J].
Balogh, Jozsef ;
Lidicky, Bernard ;
Salazar, Gelasio .
SIAM JOURNAL ON DISCRETE MATHEMATICS, 2019, 33 (03) :1261-1276
[6]   Rainbow triangles in three-colored graphs [J].
Balogh, Jozsef ;
Hu, Ping ;
Lidicky, Bernard ;
Pfender, Florian ;
Volec, Jan ;
Young, Michael .
JOURNAL OF COMBINATORIAL THEORY SERIES B, 2017, 126 :83-113
[7]   Minimum Number of Monotone Subsequences of Length 4 in Permutations [J].
Balogh, Jozsef ;
Hu, Ping ;
Lidicky, Bernard ;
Pikhurko, Oleg ;
Udvari, Balazs ;
Volec, Jan .
COMBINATORICS PROBABILITY & COMPUTING, 2015, 24 (04) :658-679
[8]   The Early History of the Brick Factory Problem [J].
Beineke, Lowell ;
Wilson, Robin .
MATHEMATICAL INTELLIGENCER, 2010, 32 (02) :41-48
[9]   CSDP, a C library for semidefinite programming [J].
Borchers, B .
OPTIMIZATION METHODS & SOFTWARE, 1999, 11-2 (1-4) :613-623
[10]  
Brosch D., 2022, arXiv