Uncertainty-aware Cross-Entropy for Semantic Segmentation

被引:1
作者
Landgraf, Steven [1 ]
Hillemann, Markus [1 ]
Wursthorn, Kira [1 ]
Ulrich, Markus [1 ]
机构
[1] Karlsruhe Inst Technol KIT, Inst Photogrammetry & Remote Sensing IPF, Karlsruhe, Germany
来源
ISPRS ANNALS OF THE PHOTOGRAMMETRY, REMOTE SENSING AND SPATIAL INFORMATION SCIENCES: VOLUME X-2-2024 | 2024年
关键词
Semantic Segmentation; Uncertainty Quantification; Monte Carlo Dropout; Vision Metrology; NEURAL-NETWORKS; FRAMEWORK;
D O I
10.5194/isprs-annals-X-2-2024-129-2024
中图分类号
V [航空、航天];
学科分类号
08 ; 0825 ;
摘要
Deep neural networks have shown exceptional performance in various tasks, but their lack of robustness, reliability, and tendency to be overconfident pose challenges for their deployment in safety-critical applications like autonomous driving. In this regard, quantifying the uncertainty inherent to a model's prediction is a promising endeavour to address these shortcomings. In this work, we present a novel Uncertainty-aware Cross-Entropy loss (U-CE) that incorporates dynamic predictive uncertainties into the training process by pixel-wise weighting of the well-known cross-entropy loss (CE). Through extensive experimentation, we demonstrate the superiority of U-CE over regular CE training on two benchmark datasets, Cityscapes and ACDC, using two common backbone architectures, ResNet-18 and ResNet-101. With U-CE, we manage to train models that not only improve their segmentation performance but also provide meaningful uncertainties after training. Consequently, we contribute to the development of more robust and reliable segmentation models, ultimately advancing the state-of-the-art in safety-critical applications and beyond..
引用
收藏
页码:129 / 136
页数:8
相关论文
共 49 条
[1]  
Bengio Yoshua, 2012, Neural Networks: Tricks of the Trade. Second Edition: LNCS 7700, P437, DOI 10.1007/978-3-642-35289-8_26
[2]   Uncertainty-aware domain alignment for anatomical structure segmentation [J].
Bian, Cheng ;
Yuan, Chenglang ;
Wang, Jiexiang ;
Li, Meng ;
Yang, Xin ;
Yu, Shuang ;
Ma, Kai ;
Yuan, Jin ;
Zheng, Yefeng .
MEDICAL IMAGE ANALYSIS, 2020, 64
[3]  
Bischke B, 2018, INT GEOSCI REMOTE SE, P6191, DOI 10.1109/IGARSS.2018.8517836
[4]  
Blundell C, 2015, PR MACH LEARN RES, V37, P1613
[5]   Semantic segmentation with labeling uncertainty and class imbalance applied to vegetation mapping [J].
Bressan, Patrik Ola ;
Marcato Junior, Jose ;
Martins, Jose Augusto Correa ;
de Melo, Maximilian Jaderson ;
Goncalves, Diogo Nunes ;
Freitas, Daniel Matte ;
Ramos, Ana Paula Marques ;
Furuya, Michelle Tais Gracia ;
Osco, Lucas Prado ;
Silva, Jonathan de Andrare ;
Luo, Zhipeng ;
Garcia, Raymundo Dordero ;
Ma, Lingfei ;
Li, Jonathan ;
Goncalves, Wesley Nunes .
INTERNATIONAL JOURNAL OF APPLIED EARTH OBSERVATION AND GEOINFORMATION, 2022, 108
[6]  
Chen BK, 2022, Arxiv, DOI arXiv:2203.08881
[7]   CaMap: Camera-based Map Manipulation on Mobile Devices [J].
Chen, Liang ;
Chen, Dongyi .
PROCEEDINGS OF THE 2ND INTERNATIONAL CONFERENCE ON COMPUTER SCIENCE AND APPLICATION ENGINEERING (CSAE2018), 2018,
[8]   The Cityscapes Dataset for Semantic Urban Scene Understanding [J].
Cordts, Marius ;
Omran, Mohamed ;
Ramos, Sebastian ;
Rehfeld, Timo ;
Enzweiler, Markus ;
Benenson, Rodrigo ;
Franke, Uwe ;
Roth, Stefan ;
Schiele, Bernt .
2016 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2016, :3213-3223
[9]  
Fort S, 2020, Arxiv, DOI [arXiv:1912.02757, DOI 10.48550/ARXIV.1912.02757, 10.48550/arXiv.1912.02757]
[10]  
Gal Y, 2016, PR MACH LEARN RES, V48