High-precision 3D printing of multi-branch vascular scaffold with plasticized PLCL thermoplastic elastomer

被引:0
|
作者
Han, Yunda [1 ,2 ,3 ]
Wang, Heran [2 ,3 ]
Guan, Yuheng [4 ]
Li, Song [2 ,3 ]
Yuan, Zewei [1 ]
Lu, Lihua [4 ]
Zheng, Xiongfei [2 ,3 ]
机构
[1] Shenyang Univ Technol, Sch Mech Engn, Shenyang 110870, Peoples R China
[2] Chinese Acad Sci, Shenyang Inst Automat, State Key Lab Robot, Shenyang 110016, Peoples R China
[3] Chinese Acad Sci, Inst Robot & Intelligent Mfg, Shenyang 110169, Peoples R China
[4] Heilongjiang Inst Technol, Sch Mechatron Engn, Harbin 150001, Peoples R China
基金
中国国家自然科学基金;
关键词
3D printing; multi-branched; vascular scaffold; additive manufacturing; rheological properties; DEPENDENCE; MORPHOLOGY; VISCOSITY; NETWORKS; POLYMERS;
D O I
10.1088/1748-605X/ad407c
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Three-dimensional (3D) printing has emerged as a transformative technology for tissue engineering, enabling the production of structures that closely emulate the intricate architecture and mechanical properties of native biological tissues. However, the fabrication of complex microstructures with high accuracy using biocompatible, degradable thermoplastic elastomers poses significant technical obstacles. This is primarily due to the inherent soft-matter nature of such materials, which complicates real-time control of micro-squeezing, resulting in low fidelity or even failure. In this study, we employ Poly (L-lactide-co-& varepsilon;-caprolactone) (PLCL) as a model material and introduce a novel framework for high-precision 3D printing based on the material plasticization process. This approach significantly enhances the dynamic responsiveness of the start-stop transition during printing, thereby reducing harmful errors by up to 93%. Leveraging this enhanced material, we have efficiently fabricated arrays of multi-branched vascular scaffolds that exhibit exceptional morphological fidelity and possess elastic moduli that faithfully approximate the physiological modulus spectrum of native blood vessels, ranging from 2.5 to 45 MPa. The methodology we propose for the compatibilization and modification of elastomeric materials addresses the challenge of real-time precision control, representing a significant advancement in the domain of melt polymer 3D printing. This innovation holds considerable promise for the creation of detailed multi-branch vascular scaffolds and other sophisticated organotypic structures critical to advancing tissue engineering and regenerative medicine.
引用
收藏
页数:13
相关论文
共 50 条
  • [1] High-Precision 3D Printing for the Fabrication of Photonic Elements
    Stender, B.
    Krupp, A.
    Kuehn, D.
    Esslinger, M.
    Steenhusen, S.
    Houbertz, R.
    2016 CONFERENCE ON LASERS AND ELECTRO-OPTICS (CLEO), 2016,
  • [2] 3D printing of high-precision and ferromagnetic functional devices
    Huang, Zhiyuan
    Shao, Guangbin
    Zhou, Dekai
    Deng, Xinghong
    Qiao, Jing
    Li, Longqiu
    INTERNATIONAL JOURNAL OF EXTREME MANUFACTURING, 2023, 5 (03)
  • [3] 3D printing of high-precision and ferromagnetic functional devices
    Zhiyuan Huang
    Guangbin Shao
    Dekai Zhou
    Xinghong Deng
    Jing Qiao
    Longqiu Li
    InternationalJournalofExtremeManufacturing, 2023, 5 (03) : 652 - 662
  • [4] High-precision 3D printing by deploying expandable microspheres
    Xu, Yang
    Wang, Fucheng
    Zhang, Pei
    Lu, Chengbang
    Liu, Weixuan
    Guo, Yueying
    Ni, Zhipeng
    Wang, Jinqing
    Lu, Baoyang
    Lou, Qin
    Liang, Xiangyu
    Liu, Ji
    CELL REPORTS PHYSICAL SCIENCE, 2024, 5 (08):
  • [5] Thermoplastic Elastomer for 3D Printing by Fused Deposition Modeling
    M. V. Timoshenko
    S. V. Balabanov
    M. M. Sychev
    D. I. Nikiforov
    Polymer Science, Series A, 2021, 63 : 652 - 656
  • [6] Thermoplastic Elastomer for 3D Printing by Fused Deposition Modeling
    Timoshenko, M., V
    Balabanov, S., V
    Sychev, M. M.
    Nikiforov, D., I
    POLYMER SCIENCE SERIES A, 2021, 63 (06) : 652 - 656
  • [7] 3D printing tablets for high-precision dose titration of caffeine
    Krueger, Liam
    Cao, Yuxue
    Zheng, Zheng
    Ward, Jason
    Miles, Jared A.
    Popat, Amirali
    INTERNATIONAL JOURNAL OF PHARMACEUTICS, 2023, 642
  • [8] TRIBOLOGICAL PROPERTIES OF THERMOPLASTIC ELASTOMER USED IN 3D PRINTING TECHNOLOGY
    Lesniewski, Tadeusz
    Wieleba, Wojciech
    Krawczyk, Justyna
    Biernacki, Krzysztof
    Opalka, Mariusz
    Aldabergenova, Tamara
    AVIATION, 2024, 28 (02) : 49 - 53
  • [9] High-precision inkjet 3D printing of curved multi-material structures: Morphology evolution and optimization
    Liu, Zhenghua
    Huang, Jin
    Li, Peng
    Ping, Bu
    Zhang, Jiaying
    Meng, Fanbo
    Li, Yuji
    ADDITIVE MANUFACTURING, 2024, 94
  • [10] Application of Thermoplastic Elastomer for 3D Printing by Fused Deposition Modeling(FDM)
    Timoshenko, M., V
    Balabanov, S., V
    Sychev, M. M.
    Nikiforov, D., I
    GLASS PHYSICS AND CHEMISTRY, 2021, 47 (05) : 502 - 504