The stationary Oseen equations in R2

被引:0
作者
Ben Ayed, Sabria [1 ,2 ]
Meslameni, Mohamed [3 ,4 ]
机构
[1] Qassim Univ, Coll Sci, Dept Math, POB 6644, Buraydah 51482, Saudi Arabia
[2] Univ Sfax, Preparatory Inst Engn Studies Sfax, Sfax,, Tunisia
[3] Sfax Univ, Fac Sci, Lab Stabil & Control Syst, Sfax, Tunisia
[4] Tunis Univ, Preparatory Inst Engn Studies, Tunis, Tunisia
来源
BULLETIN DES SCIENCES MATHEMATIQUES | 2024年 / 193卷
关键词
2D Oseen equations; Weak solutions; Strong solutions; Very weak solutions; Weighted Sobolev spaces; NAVIER-STOKES EQUATIONS; WEIGHTED SOBOLEV SPACES; WEAK SOLUTIONS; OPERATOR; DOMAINS;
D O I
10.1016/j.bulsci.2024.103453
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The main purpose of this paper is to investigate the Oseen problem in R-2. The established results are related to the existence and the uniqueness of weak, strong and very weak solutions on L-p-theory for any real 1 < p < infinity. Since the domain is considered as unbounded, we set the problem in weighted spaces in order to control the behaviors at infinity of functions. (c) 2024 Elsevier Masson SAS. All rights are reserved, including those for text and data mining, AI training, and similar technologies.
引用
收藏
页数:21
相关论文
共 32 条
[1]   The Stokes problem in Rn:: An approach in weighted Sobolev spaces [J].
Alliot, F ;
Amrouche, C .
MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 1999, 9 (05) :723-754
[2]  
AMROUCHE C, 1994, J MATH PURE APPL, V73, P579
[3]   Dirichlet and Neumann exterior problems for the n-dimensional Laplace operator an approach in weighted Sobolev spaces [J].
Amrouche, C ;
Girault, V ;
Giroire, J .
JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 1997, 76 (01) :55-81
[4]  
Amrouche C., 2011, COMMUN MATH ANAL, V10, P5
[5]  
Amrouche C., 2013, ANN U FERRARA SEZ 7, V59, P3, DOI DOI 10.1007/s11565-012-0166-4
[6]  
Amrouche C, 2007, J MATH FLUID MECH, V9, P181, DOI 10.1007/s00021-005-0195-1
[7]   ON THE OSEEN PROBLEM IN THREE-DIMENSIONAL EXTERIOR DOMAINS [J].
Amrouche, Cherif ;
Razafison, Ulrich .
ANALYSIS AND APPLICATIONS, 2006, 4 (02) :133-162
[8]  
Cherif A, 2007, J MATH FLUID MECH, V9, P211, DOI 10.1007/s00021-005-0197-z
[9]   Weak solutions for the Oseen system in 2D and when the given velocity is not sufficiently regular [J].
Amrouche, Cherif ;
Angeles Rodriguez-Bellido, Maria .
APPLIED MATHEMATICS LETTERS, 2019, 91 :220-226
[10]   The Oseen and Navier-Stokes equations in a non-solenoidal framework [J].
Amrouche, Cherif ;
Angeles Rodriguez-Bellido, Maria .
MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2016, 39 (17) :5066-5090