Integrated Triboelectric Nanogenerator for Energy Harvesting: Efficient Absorption of Wind in 6-16 m s-1 Velocity Range and Wave Energy

被引:2
作者
Feng, Chuqiao [1 ]
Ji, Shijun [1 ]
Li, Wen [1 ]
机构
[1] Jilin Univ, Sch Mech & Aerosp Engn, Changchun 130025, Peoples R China
基金
中国国家自然科学基金;
关键词
blue energy; self-powered; triboelectric nanogenerator; wind energy; BLUE ENERGY; DESIGN; FLOW;
D O I
10.1002/adem.202400987
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The ocean harbors an abundance of resources, encompassing not only wave energy but also considerable wind energy. Triboelectric nanogenerator (TENG), as a technology for harvesting low-frequency, high-entropy mechanical energy, has shown distinct advantages in the collection and application of marine and wind energy. This study introduces a triboelectric Wind and wave energy harvester (TWWEH), an energy collector based on TENG, which can be used to harness wind and wave energy. The TWWEHs comprise a wind-driven TENG (W-TENG) for wind energy collection and a ring-shaped TENG (R-TENG) for wave energy collection. The proposed vertically integrated TENG architecture enhances spatial utilization rate. Under oscillatory conditions of 0.8 Hz and +/- 30 degrees, the R-TENG generates a peak power of 0.20 mW. While at a wind speed of 10 m s(-1), a peak power of the W-TENG can reach 0.11 mW. This research provides a promising solution to harvest wave and wind energy from the ocean, offering significant potential applications in establishing self-powered oceanic assessment and meteorological systems.
引用
收藏
页数:10
相关论文
共 50 条
[1]   Exo-Ocean Exploration with Deep-Sea Sensor and Platform Technologies [J].
Aguzzi, J. ;
Flexas, M. M. ;
Floegel, S. ;
Lo Iacono, C. ;
Tangherlini, M. ;
Costa, C. ;
Marini, S. ;
Bahamon, N. ;
Martini, S. ;
Fanelli, E. ;
Danovaro, R. ;
Stefanni, S. ;
Thomsen, L. ;
Riccobene, G. ;
Hildebrandt, M. ;
Masmitja, I ;
Del Rio, J. ;
Clark, E. B. ;
Branch, A. ;
Weiss, P. ;
Klesh, A. T. ;
Schodlok, M. P. .
ASTROBIOLOGY, 2020, :897-915
[2]   Membrane-Based Self-Powered Triboelectric Sensors for Pressure Change Detection and Its Uses in Security Surveillance and Healthcare Monitoring [J].
Bai, Peng ;
Zhu, Guang ;
Jing, Qingshen ;
Yang, Jin ;
Chen, Jun ;
Su, Yuanjie ;
Ma, Jusheng ;
Zhang, Gong ;
Wang, Zhong Lin .
ADVANCED FUNCTIONAL MATERIALS, 2014, 24 (37) :5807-5813
[3]   High Performance Rotary-Structured Triboelectric-Electromagnetic Hybrid Nanogenerator for Ocean Wind Energy Harvesting [J].
Cao, Xiaole ;
Zhou, Hanlin ;
Zhou, Yuxuan ;
Hu, Yiran ;
Wang, Yuanyu ;
Wang, Zhong Lin ;
Sun, Qijun .
ADVANCED MATERIALS TECHNOLOGIES, 2023, 8 (15)
[4]   A Rolling-Bead Triboelectric Nanogenerator for Harvesting Omnidirectional Wind-Induced Energy toward Shelter Forests Monitoring [J].
Cao, Yaxing ;
Su, Erming ;
Sun, Yanshuo ;
Wang, Zhong Lin ;
Cao, Leo N. Y. .
SMALL, 2024, 20 (10)
[5]  
de Medeiros MS, 2019, ADV FUNCT MATER, V29, DOI [10.1002/adfm.201970294, 10.1002/adfm.201904350]
[6]  
Ding M., 2024, NANO RES, P1998
[7]  
Heng H., 2023, HAIYANG KAIFA YU GUA, V40, P29
[8]   Wheel-structured Triboelectric Nanogenerators with Hyperelastic Networking for High-Performance Wave Energy Harvesting [J].
Hu, Yuchen ;
Qiu, Huijing ;
Sun, Qijun ;
Wang, Zhong Lin ;
Xu, Liang .
SMALL METHODS, 2023, 7 (10)
[9]   Triboelectric nanogenerator based on rolling motion of beads for harvesting wind energy as active wind speed sensor [J].
Kim, Daewon ;
Tcho, Il-Woong ;
Choi, Yang-Kyu .
NANO ENERGY, 2018, 52 :256-263
[10]   O-ring-modularized triboelectric nanogenerator for robust blue energy harvesting in all-sea areas [J].
Li, Haohua ;
Liang, Chuangjian ;
Ning, Heng ;
Liu, Jiaqi ;
Zheng, Changyue ;
Li, Jiayu ;
Yao, Huilu ;
Peng, Yan ;
Wan, Lingyu ;
Liu, Guanlin .
NANO ENERGY, 2022, 103