Improving ionic conductivity of garnet solid-state electrolytes using Gradient boosting regression optimized machine learning

被引:8
作者
Ma, Yue [1 ,2 ]
Han, Shaoxiong [1 ,2 ]
Sun, Yan [1 ,2 ]
Cui, Zhenming [1 ,2 ]
Liu, Pengyu [1 ,2 ]
Wang, Xiaomin [1 ]
Wang, Yongzhen [1 ,2 ]
机构
[1] Taiyuan Univ Technol, Coll Mat Sci & Engn, Taiyuan 030024, Peoples R China
[2] Shanxi Joint Lab Coal based Solid Waste Resource U, Taiyuan 030024, Peoples R China
基金
中国国家自然科学基金;
关键词
Solid-state batteries; Ionic conductivity; Machine learning; Garnet electrolytes; GBR optimization; LITHIUM; PREDICTION; STABILITY; AIR;
D O I
10.1016/j.jpowsour.2024.234492
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Garnet solid-state electrolytes have become one of the most promising electrolyte materials due to their high ionic conductivity, wide electrochemical window, and excellent electrochemical stability. However, the trialand -error method used to screen high-performance garnet solid-state electrolytes has the disadvantages of a long development cycle and high cost. Machine learning methods based on big data can be independent of the physical mechanism of the material, and improved the efficiency of material development. In this work, the effect of structural factor (t), first ionization energy, and other feature descriptors on ionic conductivity were studied by using the Gradient boosting regression (GBR), Random Forest (RF), eXtreme Gradient Boosting (XGB), and other models. Machine learning models can improve the accuracy of predicting the ionic conductivity of garnet solid-state electrolytes, and have guided the preparation of five garnet -type solid electrolyte materials, the ionic conductivity of Li 6 & sdot;2 La 3 Zr 2 Fe 0 & sdot;25 O 12 is 1.08 x 10 -4 S cm - 1 , while the predicted value is 1.37 x 10 -4 S cm - 1 , the descriptors in the model will provide a reference for other researchers.
引用
收藏
页数:8
相关论文
共 53 条
  • [1] OMP-ELM: Orthogonal Matching Pursuit-Based Extreme Learning Machine for Regression
    Alcin, Omer
    Sengur, Abdulkadir
    Qian, Jiang
    Ince, Melih
    [J]. JOURNAL OF INTELLIGENT SYSTEMS, 2015, 24 (01) : 135 - 143
  • [2] High Throughput Methodology for Synthesis, Screening, and Optimization of Solid State Lithium Ion Electrolytes
    Beal, Mark S.
    Hayden, Brian E.
    Le Gall, Thierry
    Lee, Christopher E.
    Lu, Xiaojuan
    Mirsaneh, Mehdi
    Mormiche, Claire
    Pasero, Denis
    Smith, Duncan C. A.
    Weld, Andrew
    Yada, Chihiro
    Yokoishi, Shoji
    [J]. ACS COMBINATORIAL SCIENCE, 2011, 13 (04) : 375 - 381
  • [3] Searching for Mechanically Superior Solid-State Electrolytes in Li-Ion Batteries via Data-Driven Approaches
    Choi, Eunseong
    Jo, Junho
    Kim, Wonjin
    Min, Kyoungmin
    [J]. ACS APPLIED MATERIALS & INTERFACES, 2021, 13 (36) : 42590 - 42597
  • [4] AFLOWLIB.ORG: A distributed materials properties repository from high-throughput ab initio calculations
    Curtarolo, Stefano
    Setyawan, Wahyu
    Wang, Shidong
    Xue, Junkai
    Yang, Kesong
    Taylor, Richard H.
    Nelson, Lance J.
    Hart, Gus L. W.
    Sanvito, Stefano
    Buongiorno-Nardelli, Marco
    Mingo, Natalio
    Levy, Ohad
    [J]. COMPUTATIONAL MATERIALS SCIENCE, 2012, 58 : 227 - 235
  • [5] On the prediction performance of the Lasso
    Dalalyan, Arnak S.
    Hebiri, Mohamed
    Lederer, Johannes
    [J]. BERNOULLI, 2017, 23 (01) : 552 - 581
  • [6] Using recursive feature elimination in random forest to account for correlated variables in high dimensional data
    Darst, Burcu F.
    Malecki, Kristen C.
    Engelman, Corinne D.
    [J]. BMC GENETICS, 2018, 19
  • [7] Comparison of multivariate distributions using quantile-quantile plots and related tests
    Dhar, Subhra Sankar
    Chakraborty, Biman
    Chaudhuri, Probal
    [J]. BERNOULLI, 2014, 20 (03) : 1484 - 1506
  • [8] Dorugade A.V., 2014, Journal of the Association of Arab Universities for Basic and Applied Sciences, V15, P94, DOI [10.1016/j.jaubas.2013.03.005.9, DOI 10.1016/J.JAUBAS.2013.03.005, 10.1016/j.jaubas.2013.03.005]
  • [9] Physically Informed Machine Learning Prediction of Electronic Density of States
    Fung, Victor
    Ganesh, P.
    Sumpter, Bobby G.
    [J]. CHEMISTRY OF MATERIALS, 2022, 34 (11) : 4848 - 4855
  • [10] A novel solid electrolyte formed by NASICON-type Li3Zr2Si2PO12 and poly(vinylidene fluoride) for solid state batteries
    Gao, Jingxiong
    Wu, Jie
    Han, Songyi
    Zhang, Jingze
    Zhu, Lei
    Wu, Yongmin
    Zhao, Jinbao
    Tang, Weiping
    [J]. FUNCTIONAL MATERIALS LETTERS, 2021, 14 (03)