MRI radiomics captures early treatment response in patient-derived organoid endometrial cancer mouse models

被引:1
作者
Espedal, Heidi [1 ,2 ,3 ]
Fasmer, Kristine E. [1 ,2 ]
Berg, Hege F. [4 ,5 ]
Lyngstad, Jenny M. [1 ,2 ]
Schilling, Tomke [1 ,2 ]
Krakstad, Camilla [4 ,5 ]
Haldorsen, Ingfrid S. [1 ,2 ]
机构
[1] Univ Bergen, Dept Clin Med, Bergen, Norway
[2] Haukeland Hosp, Mohn Med Imaging & Visualizat Ctr, Dept Radiol, Bergen, Norway
[3] Univ Western Australia, Ctr Microscopy Characterizat & Anal, Western Australia Natl Imaging Facil, Perth, WA, Australia
[4] Univ Bergen, Ctr Canc Biomarkers, Dept Clin Sci, Bergen, Norway
[5] Haukeland Hosp, Dept Gynecol & Obstet, Bergen, Norway
关键词
patient-derived organoids; MRI radiomics; endometrial cancer; preclinical imaging; patient-derived model;
D O I
10.3389/fonc.2024.1334541
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
Background Radiomics can capture microscale information in medical images beyond what is visible to the naked human eye. Using a clinically relevant mouse model for endometrial cancer, the objective of this study was to develop and validate a radiomic signature (RS) predicting response to standard chemotherapy.Methods Mice orthotopically implanted with a patient-derived grade 3 endometrioid endometrial cancer organoid model (O-PDX) were allocated to chemotherapy (combined paclitaxel/carboplatin, n=11) or saline/control (n=13). During tumor progression, the mice underwent weekly T2-weighted (T2w) magnetic resonance imaging (MRI). Segmentation of primary tumor volume (vMRI) allowed extraction of radiomic features from whole-volume tumor masks. A radiomic model for predicting treatment response was derived employing least absolute shrinkage and selection operator (LASSO) statistics at endpoint images in the orthotopic O-PDX (RS_O), and subsequently applied on the earlier study timepoints (RS_O at baseline, and week 1-3). For external validation, the radiomic model was tested in a separate T2w-MRI dataset on segmented whole-volume subcutaneous tumors (RS_S) from the same O-PDX model, imaged at three timepoints (baseline, day 3 and day 10/endpoint) after start of chemotherapy (n=8 tumors) or saline/control (n=8 tumors).Results The RS_O yielded rapidly increasing area under the receiver operating characteristic (ROC) curves (AUCs) for predicting treatment response from baseline until endpoint; AUC=0.38 (baseline); 0.80 (week 1), 0.85 (week 2), 0.96 (week 3) and 1.0 (endpoint). In comparison, vMRI yielded AUCs of 0.37 (baseline); 0.69 (w1); 0.83 (week 2); 0.92 (week 3) and 0.97 (endpoint). When tested in the external validation dataset, RS_S yielded high accuracy for predicting treatment response at day10/endpoint (AUC=0.85) and tended to yield higher AUC than vMRI (AUC=0.78, p=0.18). Neither RS_S nor vMRI predicted response at day 3 in the external validation set (AUC=0.56 for both).Conclusions We have developed and validated a radiomic signature that was able to capture chemotherapeutic treatment response both in an O-PDX and in a subcutaneous endometrial cancer mouse model. This study supports the promising role of preclinical imaging including radiomic tumor profiling to assess early treatment response in endometrial cancer models.
引用
收藏
页数:11
相关论文
共 35 条
[21]   Adjuvant Chemotherapy plus Radiation for Locally Advanced Endometrial Cancer [J].
Matei, Daniela ;
Filiaci, Virginia ;
Randall, Marcus E. ;
Mutch, David ;
Steinhoff, Margaret M. ;
DiSilvestro, Paul A. ;
Moxley, Katherine M. ;
Kim, Yong M. ;
Powell, Matthew A. ;
O'Malley, David M. ;
Spirtos, Nick M. ;
Small, William, Jr. ;
Tewari, Krishnansu S. ;
Richards, William E. ;
Nakayama, John ;
Matulonis, Ursula A. ;
Huang, Helen Q. ;
Miller, David S. .
NEW ENGLAND JOURNAL OF MEDICINE, 2019, 380 (24) :2317-2326
[22]   A radiomic model to classify response to neoadjuvant chemotherapy in breast cancer [J].
McAnena, Peter ;
Moloney, Brian M. M. ;
Browne, Robert ;
O'Halloran, Niamh ;
Walsh, Leon ;
Walsh, Sinead ;
Sheppard, Declan ;
Sweeney, Karl J. J. ;
Kerin, Michael J. J. ;
Lowery, Aoife J. J. .
BMC MEDICAL IMAGING, 2022, 22 (01)
[23]   Patient-Derived Xenograft Models for Endometrial Cancer Research [J].
Moiola, Cristian P. ;
Lopez-Gil, Carlos ;
Cabrera, Silvia ;
Garcia, Angel ;
Tom Van Nyen ;
Annibali, Daniela ;
Fonnes, Tina ;
Vidal, August ;
Villanueva, Alberto ;
Matias-Guiu, Xavier ;
Krakstad, Camilla ;
Amant, Frederic ;
Gil-Moreno, Antonio ;
Colas, Eva .
INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2018, 19 (08)
[24]   Radiomic Analysis: Study Design, Statistical Analysis, and Other Bias Mitigation Strategies [J].
Moskowitz, Chaya S. ;
Welch, Mattea L. ;
Jacobs, Michael A. ;
Kurland, Brenda F. ;
Simpson, Amber L. .
RADIOLOGY, 2022, 304 (02) :265-273
[25]   Endometrial cancer: ESMO Clinical Practice Guideline for diagnosis, treatment and follow-up [J].
Oaknin, A. ;
Bosse, T. J. ;
Creutzberg, C. L. ;
Giornelli, G. ;
Harter, P. ;
Joly, F. ;
Lorusso, D. ;
Marth, C. ;
Makker, V ;
Mirza, M. R. ;
Ledermann, J. A. ;
Colombo, N. .
ANNALS OF ONCOLOGY, 2022, 33 (09) :860-877
[26]   MRI radiomics independent of clinical baseline characteristics and neoadjuvant treatment modalities predicts response to neoadjuvant therapy in rectal cancer [J].
Song, Maxiaowei ;
Li, Shuai ;
Wang, Hongzhi ;
Hu, Ke ;
Wang, Fengwei ;
Teng, Huajing ;
Wang, Zhi ;
Liu, Jin ;
Jia, Angela Y. ;
Cai, Yong ;
Li, Yongheng ;
Zhu, Xianggao ;
Geng, Jianhao ;
Zhang, Yangzi ;
Wan, XiangBo ;
Wang, Weihu .
BRITISH JOURNAL OF CANCER, 2022, 127 (02) :249-257
[27]   Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries [J].
Sung, Hyuna ;
Ferlay, Jacques ;
Siegel, Rebecca L. ;
Laversanne, Mathieu ;
Soerjomataram, Isabelle ;
Jemal, Ahmedin ;
Bray, Freddie .
CA-A CANCER JOURNAL FOR CLINICIANS, 2021, 71 (03) :209-249
[29]   Computational Radiomics System to Decode the Radiographic Phenotype [J].
van Griethuysen, Joost J. M. ;
Fedorov, Andriy ;
Parmar, Chintan ;
Hosny, Ahmed ;
Aucoin, Nicole ;
Narayan, Vivek ;
Beets-Tan, Regina G. H. ;
Fillion-Robin, Jean-Christophe ;
Pieper, Steve ;
Aerts, Hugo J. W. L. .
CANCER RESEARCH, 2017, 77 (21) :E104-E107
[30]   Preoperative Assessment for High-Risk Endometrial Cancer by Developing anMRI- and Clinical-Based Radiomics Nomogram: A Multicenter Study [J].
Yan, Bi Cong ;
Li, Ying ;
Hua, Feng ;
Feng, Feng ;
Sun, Ming Hua ;
Lin, Guang Wu ;
Zhang, Guo Fu ;
Qiang, Jin Wei .
JOURNAL OF MAGNETIC RESONANCE IMAGING, 2020, 52 (06) :1872-1882