Molecular and immune characterization of Chinese early-stage non-squamous non-small cell lung cancer: a multi-omics cohort study

被引:1
作者
Peng, Haoxin [1 ,2 ,3 ,4 ]
Wu, Xiangrong [2 ,3 ,4 ,5 ]
Cui, Xiaoli [6 ]
Liu, Shaopeng [7 ,8 ]
Liang, Yueting [9 ]
Cai, Xiuyu [10 ]
Shi, Mengping [7 ]
Zhong, Ran [2 ,3 ]
Li, Caichen [2 ,3 ]
Liu, Jun [2 ,3 ]
Wu, Dongfang [6 ]
Gao, Zhibo [6 ]
Lu, Xu [7 ,8 ]
Luo, Haitao [6 ]
He, Jianxing [2 ,3 ]
Liang, Wenhua [2 ,3 ]
机构
[1] Peking Univ, Canc Hosp & Inst, Minist Educ,Key Lab Carcinogenesis & Translat Res, Beijing, Peoples R China
[2] Guangzhou Med Univ, Affiliated Hosp 1, Dept Thorac Oncol & Surg, China State Key Lab Resp Dis, Yanjiang West Rd, Guangzhou 510000, Peoples R China
[3] Guangzhou Med Univ, Affiliated Hosp 1, Natl Clin Res Ctr Resp Dis, Yanjiang West Rd, Guangzhou 510000, Peoples R China
[4] Guangzhou Med Univ, Nanshan Sch, Dept Clin Med, Guangzhou, Peoples R China
[5] Fudan Univ, Shanghai Med Coll, Dept Oncol, Shanghai, Peoples R China
[6] YuceBio Technol Co Ltd, Shenzhen Engn Ctr Translat Med Precis Canc Immunod, Shenyan Rd, Shenzhen 518000, Peoples R China
[7] Guangdong Polytech Normal Univ, Dept Comp Sci, Guangzhou, Peoples R China
[8] Dept Artificial Intelligence Res, Pazhou Lab, Guangzhou, Peoples R China
[9] Peking Univ, Canc Hosp & Inst, Beijing, Peoples R China
[10] Sun Yat Sen Univ, Dept Gen Internal Med, State Key Lab Oncol South China, Collaborat Innovat Cener Canc Med,Canc Ctr, Guangzhou, Peoples R China
基金
中国国家自然科学基金;
关键词
Early-stage lung cancer (early-stage LC); multi-omics; machine-learning (ML); disease-free survival (DFS); GENE; EXPRESSION; METASTASIS; CARCINOMA; ADENOCARCINOMA; PROFILES; PROMOTES;
D O I
10.21037/tlcr-23-800
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
Background: Albeit considered with superior survival, around 30% of the early -stage non-squamous nonsmall cell lung cancer (Ns-NSCLC) patients relapse within 5 years, suggesting unique biology. However, the biological characteristics of early -stage Ns-NSCLC, especially in the Chinese population, are still unclear. Methods: Multi-omics interrogation of early -stage Ns-NSCLC (stage I-III), paired blood samples and normal lung tissues (n=76) by whole-exome sequencing (WES), RNA sequencing, and T -cell receptor (TCR) sequencing were conducted. Results: An average of 128 exonic mutations were identified, and the most frequently mutant gene was EGFR (55%), followed by TP53 (37%) and TTN (26%). Mutations in MUC17 , ABCA2 , PDE4DIP , and MYO18B predicted significantly unfavorable disease -free survival (DFS). Moreover, cytobands amplifications in 8q24.3, 14q13.1, 14q11.2, and deletion in 3p21.1 were highlighted in recurrent cases. Higher incidence of human leukocyte antigen loss of heterozygosity (HLA-LOH), higher tumor mutational burden (TMB) and tumor neoantigen burden (TNB) were identified in ever -smokers than never -smokers. HLA-LOH also correlated with higher TMB, TNB, intratumoral heterogeneity (ITH), and whole chromosomal instability (wCIN) scores. Interestingly, higher ITH was an independent predictor of better DFS in earlystage Ns-NSCLC. Up -regulation of immune -related genes, including CRABP2 , ULBP2 , IL31RA , and IL1A , independently portended a dismal prognosis. Enhanced TCR diversity of peripheral blood mononuclear cells (PBMCs) predicted better prognosis, indicative of a noninvasive method for relapse surveillance. Eventually, seven machine -learning (ML) algorithms were employed to evaluate the predictive accuracy of clinical, genomic, transcriptomic, and TCR repertoire data on DFS, showing that clinical and RNA features combination in the random forest (RF) algorithm, with area under the curve (AUC) of 97.5% and 83.3% in the training and testing cohort, respectively, significantly outperformed other methods. Conclusions: This study comprehensively profiled the genomic, transcriptomic, and TCR repertoire spectrums of Chinese early -stage Ns-NSCLC, shedding light on biological underpinnings and candidate biomarkers for prognosis development.
引用
收藏
页码:763 / 784
页数:31
相关论文
共 67 条
[51]   Oncogenic Signaling Pathways in The Cancer Genome Atlas [J].
Sanchez-Vega, Francisco ;
Mina, Marco ;
Armenia, Joshua ;
Chatila, Walid K. ;
Luna, Augustin ;
La, Konnor C. ;
Dimitriadoy, Sofia ;
Liu, David L. ;
Kantheti, Havish S. ;
Saghafinia, Sadegh ;
Chakravarty, Debyani ;
Daian, Foysal ;
Gao, Qingsong ;
Bailey, Matthew H. ;
Liang, Wen-Wei ;
Foltz, Steven M. ;
Shmulevich, Ilya ;
Ding, Li ;
Heins, Zachary ;
Ochoa, Angelica ;
Gross, Benjamin ;
Gao, Jianjiong ;
Zhang, Hongxin ;
Kundra, Ritika ;
Kandoth, Cyriac ;
Bahceci, Istemi ;
Dervishi, Leonard ;
Dogrusoz, Ugur ;
Zhou, Wanding ;
Shen, Hui ;
Laird, Peter W. ;
Way, Gregory P. ;
Greene, Casey S. ;
Liang, Han ;
Xiao, Yonghong ;
Wang, Chen ;
Iavarone, Antonio ;
Berger, Alice H. ;
Bivona, Trever G. ;
Lazar, Alexander J. ;
Hammer, Gary D. ;
Giordano, Thomas ;
Kwong, Lawrence N. ;
McArthur, Grant ;
Huang, Chenfei ;
Tward, Aaron D. ;
Frederick, Mitchell J. ;
McCormick, Frank ;
Meyerson, Matthew ;
Van Allen, Eliezer M. .
CELL, 2018, 173 (02) :321-+
[52]   Genetic diversity fuels gene discovery for tobacco and alcohol use [J].
Saunders, Gretchen R. B. ;
Wang, Xingyan ;
Chen, Fang ;
Jang, Seon-Kyeong ;
Liu, Mengzhen ;
Wang, Chen ;
Gao, Shuang ;
Jiang, Yu ;
Khunsriraksakul, Chachrit ;
Otto, Jacqueline M. ;
Addison, Clifton ;
Akiyama, Masato ;
Albert, Christine M. ;
Aliev, Fazil ;
Alonso, Alvaro ;
Arnett, Donna K. ;
Ashley-Koch, Allison E. ;
Ashrani, Aneel A. ;
Barnes, Kathleen C. ;
Barr, R. Graham ;
Bartz, Traci M. ;
Becker, Diane M. ;
Bielak, Lawrence F. ;
Benjamin, Emelia J. ;
Bis, Joshua C. ;
Bjornsdottir, Gyda ;
Blangero, John ;
Bleecker, Eugene R. ;
Boardman, Jason D. ;
Boerwinkle, Eric ;
Boomsma, Dorret, I ;
Boorgula, Meher Preethi ;
Bowden, Donald W. ;
Brody, Jennifer A. ;
Cade, Brian E. ;
Chasman, Daniel, I ;
Chavan, Sameer ;
Chen, Yii-Der Ida ;
Chen, Zhengming ;
Cheng, Iona ;
Cho, Michael H. ;
Choquet, Helene ;
Cole, John W. ;
Cornelis, Marilyn C. ;
Cucca, Francesco ;
Curran, Joanne E. ;
de Andrade, Mariza ;
Dick, Danielle M. ;
Docherty, Anna R. ;
Duggirala, Ravindranath .
NATURE, 2022, 612 (7941) :720-+
[53]   Development and validation of an immune gene-set based Prognostic signature in ovarian cancer [J].
Shen, Sipeng ;
Wang, Guanrong ;
Zhang, Ruyang ;
Zhao, Yang ;
Yu, Hao ;
Yongyue, Wei ;
Chen, Feng .
EBIOMEDICINE, 2019, 40 :318-326
[54]   VDJtools: Unifying Post-analysis of T Cell Receptor Repertoires [J].
Shugay, Mikhail ;
Bagaev, Dmitriy V. ;
Turchaninova, Maria A. ;
Bolotin, Dmitriy A. ;
Britanova, Olga V. ;
Putintseva, Ekaterina V. ;
Pogorelyy, Mikhail V. ;
Nazarov, Vadim I. ;
Zvyagin, Ivan V. ;
Kirgizova, Vitalina I. ;
Kirgizov, Kirill I. ;
Skorobogatova, Elena V. ;
Chudakov, Dmitriy M. .
PLOS COMPUTATIONAL BIOLOGY, 2015, 11 (11)
[55]   Gene set enrichment analysis: A knowledge-based approach for interpreting genome-wide expression profiles [J].
Subramanian, A ;
Tamayo, P ;
Mootha, VK ;
Mukherjee, S ;
Ebert, BL ;
Gillette, MA ;
Paulovich, A ;
Pomeroy, SL ;
Golub, TR ;
Lander, ES ;
Mesirov, JP .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2005, 102 (43) :15545-15550
[56]   Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries [J].
Sung, Hyuna ;
Ferlay, Jacques ;
Siegel, Rebecca L. ;
Laversanne, Mathieu ;
Soerjomataram, Isabelle ;
Jemal, Ahmedin ;
Bray, Freddie .
CA-A CANCER JOURNAL FOR CLINICIANS, 2021, 71 (03) :209-249
[57]   Tumor Recurrence After Complete Resection for Non-Small Cell Lung Cancer [J].
Taylor, Matthew D. ;
Nagji, Alykhan S. ;
Bhamidipati, Castigliano M. ;
Theodosakis, Nicholas ;
Kozower, Benjamin D. ;
Lau, Christine L. ;
Jones, David R. .
ANNALS OF THORACIC SURGERY, 2012, 93 (06) :1813-1821
[58]   Circulating Immune Bioenergetic, Metabolic, and Genetic Signatures Predict Melanoma Patients' Response to Anti-PD-1 Immune Checkpoint Blockade [J].
Triozzi, Pierre L. ;
Stirling, Elizabeth R. ;
Song, Qianqian ;
Westwood, Brian ;
Kooshki, Mitra ;
Forbes, M. Elizabeth ;
Holbrook, Beth C. ;
Cook, Katherine L. ;
Alexander-Miller, Martha A. ;
Miller, Lance D. ;
Zhang, Wei ;
Soto-Pantoja, David R. .
CLINICAL CANCER RESEARCH, 2022, 28 (06) :1192-1202
[59]   Whole-genome sequencing reveals genomic signatures associated with the inflammatory microenvironments in Chinese NSCLC patients [J].
Wang, Cheng ;
Yin, Rong ;
Dai, Juncheng ;
Gu, Yayun ;
Cui, Shaohua ;
Ma, Hongxia ;
Zhang, Zhihong ;
Huang, Jiaqi ;
Qin, Na ;
Jiang, Tao ;
Geng, Liguo ;
Zhu, Meng ;
Pu, Zhening ;
Du, Fangzhi ;
Wang, Yuzhuo ;
Yang, Jianshui ;
Chen, Liang ;
Wang, Qianghu ;
Jiang, Yue ;
Dong, Lili ;
Yao, Yihong ;
Jin, Guangfu ;
Hu, Zhibin ;
Jiang, Liyan ;
Xu, Lin ;
Shen, Hongbing .
NATURE COMMUNICATIONS, 2018, 9
[60]   Effect of TTN Mutations on Immune Microenvironment and Efficacy of Immunotherapy in Lung Adenocarcinoma Patients [J].
Wang, Zhe ;
Wang, Chunguang ;
Lin, Shengcheng ;
Yu, Xin .
FRONTIERS IN ONCOLOGY, 2021, 11