NEW FRACTIONAL INTEGRAL INEQUALITIES FOR LR-h-PREINVEX INTERVAL-VALUED FUNCTIONS

被引:0
|
作者
Tan, Yun [1 ]
Zhao, Dafang [1 ]
机构
[1] Hubei Normal Univ, Sch Math & Stat, Huangshi Key Lab Metaverse & Virtual Simulat, Huangshi 435002, Peoples R China
基金
湖北省教育厅重点项目;
关键词
Hermite-Hadamard Inequalities; Hermite-Hadamard-Fej & eacute; r Inequalities; LR-h-Preinvex Functions; Interval-Valued Functions; Fractional Integrals; HADAMARD TYPE INEQUALITIES; CONVEX-FUNCTIONS;
D O I
10.1142/S0218348X2450083X
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Based on the pseudo-order relation, we introduce the concept of left and right h-preinvex interval-valued functions (LR-h-PIVFs). Further, we establish the Hermite-Hadamard and Hermite-Hadamard-Fejer-type estimates for LR-h-PIVFs using generalized fractional integrals. Finally, an example of interval-valued fractional integrals is provided to illustrate the validity of the results derived herein. Our results not only extend some existing inequalities for Hadamard, Riemann-Liouville, and Katugampola fractional integrals, but also provide new insights for future research on generalized convexity and IVFs, among others.
引用
收藏
页数:14
相关论文
共 50 条
  • [31] Hermite-Hadamard, Fejer and Pachpatte-Type Integral Inequalities for Center-Radius Order Interval-Valued Preinvex Functions
    Sahoo, Soubhagya Kumar
    Latif, Muhammad Amer
    Alsalami, Omar Mutab
    Treanta, Savin
    Sudsutad, Weerawat
    Kongson, Jutarat
    FRACTAL AND FRACTIONAL, 2022, 6 (09)
  • [32] CERTAIN FRACTIONAL INTEGRAL INCLUSIONS PERTAINING TO INTERVAL-VALUED EXPONENTIAL TRIGONOMETRIC CONVEX FUNCTIONS
    Zhou, Taichun
    Du, Tingsong
    JOURNAL OF MATHEMATICAL INEQUALITIES, 2023, 17 (01): : 283 - 314
  • [33] Hermite-Hadamard Type Inclusions for Interval-Valued Coordinated Preinvex Functions
    Lai, Kin Keung
    Mishra, Shashi Kant
    Bisht, Jaya
    Hassan, Mohd
    SYMMETRY-BASEL, 2022, 14 (04):
  • [34] Some novel inequalities for LR- h-convex interval-valued functions by means of pseudo-order relation
    Khan, Muhammad Bilal
    Noor, Muhammad Aslam
    Al-Shomrani, Mohammed M.
    Abdullah, Lazim
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2022, 45 (03) : 1310 - 1340
  • [35] Chebyshev type inequalities for interval-valued functions
    Zhao, Dafang
    An, Tianqing
    Ye, Guoju
    Liu, Wei
    FUZZY SETS AND SYSTEMS, 2020, 396 (396) : 82 - 101
  • [36] A new approach to interval-valued inequalities
    Awais Younus
    Muhammad Asif
    Jehad Alzabut
    Abdul Ghaffar
    Kottakkaran Sooppy Nisar
    Advances in Difference Equations, 2020
  • [37] A new approach to interval-valued inequalities
    Younus, Awais
    Asif, Muhammad
    Alzabut, Jehad
    Ghaffar, Abdul
    Nisar, Kottakkaran Sooppy
    ADVANCES IN DIFFERENCE EQUATIONS, 2020, 2020 (01)
  • [38] Fuzzy-interval inequalities for generalized preinvex fuzzy interval valued functions
    Khan, Muhammad Bilal
    Srivastava, Hari Mohan
    Mohammed, Pshtiwan Othman
    Guirao, Juan L. G.
    Jawa, Taghreed M.
    MATHEMATICAL BIOSCIENCES AND ENGINEERING, 2022, 19 (01) : 812 - 835
  • [39] (h - m)-PREINVEX FUNCTIONS ON FRACTAL SETS AND LOCAL FRACTIONAL INTEGRAL INEQUALITIES WITH APPLICATIONS
    Al-sa'di, Sa'ud
    Bibi, Maria
    Seol, Youngsoo
    Muddassar, Muhammad
    JOURNAL OF NONLINEAR FUNCTIONAL ANALYSIS, 2024, 2024
  • [40] Fractional Ostrowski Type Inequalities for Interval Valued Functions
    Budak, Huseyin
    Kashuri, Artion
    Butt, Saad Ihsan
    FILOMAT, 2022, 36 (08) : 2531 - 2540