Finite Groups with P-Subnormal Schmidt Subgroups

被引:0
作者
Yi, Xiaolan [1 ]
Xu, Zhuyan [1 ]
Kamornikov, S. F. [2 ]
机构
[1] Zhejiang Sci Tech Univ, Hangzhou 310018, Peoples R China
[2] Francisk Skorina Gomel State Univ, Gomel 246019, BELARUS
基金
中国国家自然科学基金;
关键词
finite group; P-subnormal subgroup; Schmidt subgroup; saturated Fitting formation;
D O I
10.1134/S0081543824030179
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A subgroup H of a group G is called P-subnormal in G whenever either H = G or there is a chain of subgroups H = H-0 subset of H-1 subset of...subset of H-n = G such that |H-i:Hi-1| is a prime for every i = 1, 2, ..., n. We study the structure of a finite group G all of whose Schmidt subgroups are P-subnormal. The obtained results complement the answer to Problem 18.30 in the Kourovka Notebook..
引用
收藏
页码:S231 / S238
页数:8
相关论文
共 18 条
[1]   FINITE GROUPS WITH HEREDITARILY G-PERMUTABLE SCHMIDT SUBGROUPS [J].
Ballester-Bolinches, A. ;
Kamornikov, S. F. ;
Perez-calabuig, V. ;
Tyutyanov, V. N. .
BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2024, 109 (03) :522-528
[2]   On Factorised Finite Groups [J].
Ballester-Bolinches, A. ;
Li, Y. ;
Pedraza-Aguilera, M. C. ;
Su, Ning .
MEDITERRANEAN JOURNAL OF MATHEMATICS, 2020, 17 (02)
[3]  
Berkovich Y., 2011, Groups of Prime Power Order
[4]  
Doerk K., 1992, FINITE SOLUBLE GROUP, DOI [DOI 10.1515/9783110870138, 10.1515/9783110870138]
[5]  
Golfand J.A., 1948, DOKL AKAD NAUK+, V60, P1313
[6]  
Kniahina V, 2013, INT J GROUP THEORY, V2, P21
[7]   Finite Groups with DOUBLE-STRUCK CAPITAL P-Subnormal Sylow Subgroups [J].
Kniahina, V. N. ;
Monakhov, V. S. .
UKRAINIAN MATHEMATICAL JOURNAL, 2021, 72 (10) :1571-1578
[8]   Finite groups with subnormal Schmidt subgroups [J].
Knyagina, VN ;
Monakhov, VS .
SIBERIAN MATHEMATICAL JOURNAL, 2004, 45 (06) :1075-1079
[9]  
Mazurov VD., 2022, The Kourovka Notebook: Unsolved Problems in Group Theory
[10]  
Monakhov VS, 2016, SIBERIAN MATH J+, V57, P352, DOI 10.1134/S0037446616020178