ChatFFA: An ophthalmic chat system for unified vision-language understanding and question answering for fundus fluorescein angiography

被引:9
作者
Chen, Xiaolan [1 ]
Xu, Pusheng [4 ]
Li, Yao [5 ]
Zhang, Weiyi [1 ]
Song, Fan [1 ]
He, Mingguang [1 ,2 ,3 ]
Shi, Danli [1 ,2 ]
机构
[1] Hong Kong Polytech Univ, Sch Optometry, Kowloon, Hong Kong, Peoples R China
[2] Hong Kong Polytech Univ, Res Ctr SHARP Vis RCSV, Kowloon, Hong Kong, Peoples R China
[3] Ctr Eye & Vis Res CEVR, Shatin, 17W Hong Kong Sci Pk, Hong Kong, Peoples R China
[4] Sun Yat Sen Univ, Zhongshan Ophthalm Ctr, Guangdong Prov Clin Res Ctr Ocular Dis, State Key Lab Ophthalmol,Guangdong Prov Key Lab Op, Guangzhou 510060, Peoples R China
[5] Univ Waterloo, Comp Sci, 200 Univ Ave W0, Waterloo, ON, Canada
关键词
Artificial intelligence; Ophthalmology;
D O I
10.1016/j.isci.2024.110021
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Existing automatic analysis of fundus fluorescein angiography (FFA) images faces limitations, including a predetermined set of possible image classifications and being confined to text-based question-answering (QA) approaches. This study aims to address these limitations by developing an end-to-end unified model that utilizes synthetic data to train a visual question-answering model for FFA images. To achieve this, we employed ChatGPT to generate 4,110,581 QA pairs for a large FFA dataset, which encompassed a total of 654,343 FFA images from 9,392 participants. We then fine-tuned the Bootstrapping Language-Image Pretraining (BLIP) framework to enable simultaneous handling of vision and language. The performance of the fine-tuned model (ChatFFA) was thoroughly evaluated through automated and manual assessments, as well as case studies based on an external validation set, demonstrating satisfactory results. In conclusion, our ChatFFA system paves the way for improved efficiency and feasibility in medical imaging analysis by leveraging generative large language models.
引用
收藏
页数:12
相关论文
共 34 条
[1]  
[Anonymous], Gpt-4v(ision) system card
[2]   Comparison of Ophthalmologist and Large Language Model Chatbot Responses to Online Patient Eye Care Questions [J].
Bernstein, Isaac A. ;
Zhang, Youchen ;
Govil, Devendra ;
Majid, Iyad ;
Chang, Robert T. ;
Sun, Yang ;
Shue, Ann ;
Chou, Jonathan C. ;
Schehlein, Emily ;
Christopher, Karen L. ;
Groth, Sylvia L. ;
Ludwig, Cassie ;
Wang, Sophia Y. .
JAMA NETWORK OPEN, 2023, 6 (08)
[3]   Large language models and their impact in ophthalmology [J].
Betzler, Bjorn Kaijun ;
Chen, Haichao ;
Cheng, Ching -Yu ;
Lee, Cecilia S. ;
Ning, Guochen ;
Song, Su Jeong ;
Lee, Aaron Y. ;
Kawasaki, Ryo ;
van Wijngaarden, Peter ;
Grzybowski, Andrzej ;
He, Mingguang ;
Li, Dawei ;
Ran, An Ran ;
Ting, Daniel Shu Wei ;
Teo, Kelvin ;
Ruamviboonsuk, Paisan ;
Sivaprasad, Sobha ;
Chaudhary, Varun ;
Tadayoni, Ramin ;
Wang, Xiaofei ;
Cheung, Carol Y. ;
Zheng, Yingfeng ;
Wang, Ya Xing ;
Tham, Yih Chung ;
Wong, Tien Yin .
LANCET DIGITAL HEALTH, 2023, 5 (12) :E917-E924
[4]   A Survey on Evaluation of Large Language Models [J].
Chang, Yupeng ;
Wang, Xu ;
Wang, Jindong ;
Wu, Yuan ;
Yang, Linyi ;
Zhu, Kaijie ;
Chen, Hao ;
Yi, Xiaoyuan ;
Wang, Cunxiang ;
Wang, Yidong ;
Ye, Wei ;
Zhang, Yue ;
Chang, Yi ;
Yu, Philip S. ;
Yang, Qiang ;
Xie, Xing .
ACM TRANSACTIONS ON INTELLIGENT SYSTEMS AND TECHNOLOGY, 2024, 15 (03)
[5]   FFA-GPT: an automated pipeline for fundus fluorescein angiography interpretation and question-answer [J].
Chen, Xiaolan ;
Zhang, Weiyi ;
Xu, Pusheng ;
Zhao, Ziwei ;
Zheng, Yingfeng ;
Shi, Danli ;
He, Mingguang .
NPJ DIGITAL MEDICINE, 2024, 7 (01)
[6]  
Chen XL, 2024, Arxiv, DOI [arXiv:2403.00840, 10.48550/arXiv.2403.00840, DOI 10.48550/ARXIV.2403.00840]
[7]   ICGA-GPT: report generation and question answering for indocyanine green angiography images [J].
Chen, Xiaolan ;
Zhang, Weiyi ;
Zhao, Ziwei ;
Xu, Pusheng ;
Zheng, Yingfeng ;
Shi, Danli ;
He, Mingguang .
BRITISH JOURNAL OF OPHTHALMOLOGY, 2024, 108 (10) :1450-1456
[8]   Machine intelligence in healthcare-perspectives on trustworthiness, explainability, usability, and transparency [J].
Cutillo, Christine M. ;
Sharma, Karlie R. ;
Foschini, Luca ;
Kundu, Shinjini ;
Mackintosh, Maxine ;
Mandl, Kenneth D. ;
Beck, Tyler ;
Collier, Elaine ;
Colvis, Christine ;
Gersing, Kenneth ;
Gordon, Valery ;
Jensen, Roxanne ;
Shabestari, Behrouz ;
Southall, Noel .
NPJ DIGITAL MEDICINE, 2020, 3 (01)
[9]  
Devlin J, 2019, 2019 CONFERENCE OF THE NORTH AMERICAN CHAPTER OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS: HUMAN LANGUAGE TECHNOLOGIES (NAACL HLT 2019), VOL. 1, P4171
[10]  
Dosovitskiy Alexey., 2021, PROC INT C LEARN REP, P2021