A process-driven deep learning hydrological model for daily rainfall-runoff simulation

被引:10
作者
Li, Heng [1 ]
Zhang, Chunxiao [1 ,2 ,6 ]
Chu, Wenhao [1 ]
Shen, Dingtao [3 ,4 ]
Li, Rongrong [5 ]
机构
[1] China Univ Geosci Beijing, Sch Informat Engn, 29 Xueyuan Rd, Beijing 100083, Peoples R China
[2] Ministy Nat Resources, Observat & Res Stn Beijing Fangshan Comprehens Exp, Beijing 100083, Peoples R China
[3] Cent China Normal Univ, Key Lab Geog Proc Anal & Simulat Hubei Prov, Wuhan 430079, Peoples R China
[4] Cent China Normal Univ, Coll Urban & Environm Sci, Wuhan 430079, Peoples R China
[5] Chinese Univ Hong Kong, Inst Space & Earth Informat Sci, Shatin, Hong Kong, Peoples R China
[6] Rm 216,3 Teaching Bldg,29,Xueyuan Rd, Beijing 100083, Peoples R China
关键词
Hybrid hydrological modeling; Process-based modeling; Deep learning; Rainfall-runoff simulation; DATA SET; STREAMFLOW;
D O I
10.1016/j.jhydrol.2024.131434
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
Although deep learning (DL) models, especially long-short-term memory (LSTM), demonstrate greater accuracy than process-based models in rainfall-runoff simulation, the predictions from process-based models are more physical than DL models. The main reason is that DL models have almost no process understanding capabilities like process-based models beyond their fitting capability. In this study, we developed a process-driven DL model under a unified DL architecture to improve the process awareness of DL models. To implement the model, a conceptual hydrological model (EXP-HYDRO) is implanted into a recurrent neural network (RNN) cell as a process driver for providing multi-sub-process variables related to the runoff process, and an Entity-Aware LSTM (EA-LSTM) cell is incorporated as a post-processor layer, resulting in the Process-driven RNN-EA-LSTM (PRNNEA-LSTM). Under the assistance of the process driver, the model performance of PRNN-EA-LSTM on the 531 catchments from the Catchment Attributes and Meteorology for Large-sample Studies dataset is more robust than the pure DL model, and better than using only EXP-HYDRO as the input of EA-LSTM (i.e., EXP-HYDRO-EALSTM). Specifically, the median Nash-Sutcliffe efficiency (NSE) of PRNN-EA-LSTM in local and regional simulation is 0.03 and 0.02 higher than LSTM and 0.01 higher than EXP-HYDRO-EA-LSTM. Additionally, PRNN-EALSTM significantly enhances the low flow simulations and reduces the catchments number with negative NSE. This study demonstrates that process-based models can help DL models better represent the rainfall-runoff relationship under a unified architecture. Consequently, integrating the adaptability of process-based models into the DL architecture is anticipated to bolster the process understanding capabilities of DL models.
引用
收藏
页数:15
相关论文
共 46 条
[1]   The CAMELS data set: catchment attributes and meteorology for large-sample studies [J].
Addor, Nans ;
Newman, Andrew J. ;
Mizukami, Naoki ;
Clark, Martyn P. .
HYDROLOGY AND EARTH SYSTEM SCIENCES, 2017, 21 (10) :5293-5313
[2]   The quiet revolution of numerical weather prediction [J].
Bauer, Peter ;
Thorpe, Alan ;
Brunet, Gilbert .
NATURE, 2015, 525 (7567) :47-55
[3]   Dominant flood generating mechanisms across the United States [J].
Berghuijs, Wouter R. ;
Woods, Ross A. ;
Hutton, Christopher J. ;
Sivapalan, M. .
GEOPHYSICAL RESEARCH LETTERS, 2016, 43 (09) :4382-4390
[4]  
Beven K.J., 2012, RAINFALL RUNOFF MODE, V2nd, DOI DOI 10.1002/9781119951001
[5]   Twenty-three unsolved problems in hydrology (UPH) - a community perspective [J].
Bloeschl, Gunter ;
Bierkens, Marc F. P. ;
Chambel, Antonio ;
Cudennec, Christophe ;
Destouni, Georgia ;
Fiori, Aldo ;
Kirchner, James W. ;
McDonnell, Jeffrey J. ;
Savenije, Hubert H. G. ;
Sivapalan, Murugesu ;
Stumpp, Christine ;
Toth, Elena ;
Volpi, Elena ;
Carr, Gemma ;
Lupton, Claire ;
Salinas, Jose ;
Szeles, Borbala ;
Viglione, Alberto ;
Aksoy, Hafzullah ;
Allen, Scott T. ;
Amin, Anam ;
Andreassian, Vazken ;
Arheimer, Berit ;
Aryal, Santosh K. ;
Baker, Victor ;
Bardsley, Earl ;
Barendrecht, Marlies H. ;
Bartosova, Alena ;
Batelaan, Okke ;
Berghuijs, Wouter R. ;
Beven, Keith ;
Blume, Theresa ;
Bogaard, Thom ;
de Amorim, Pablo Borges ;
Boettcher, Michael E. ;
Boulet, Gilles ;
Breinl, Korbinian ;
Brilly, Mitja ;
Brocca, Luca ;
Buytaert, Wouter ;
Castellarin, Attilio ;
Castelletti, Andrea ;
Chen, Xiaohong ;
Chen, Yangbo ;
Chen, Yuanfang ;
Chifflard, Peter ;
Claps, Pierluigi ;
Clark, Martyn P. ;
Collins, Adrian L. ;
Croke, Barry .
HYDROLOGICAL SCIENCES JOURNAL, 2019, 64 (10) :1141-1158
[6]   Improving the Predictive Skill of a Distributed Hydrological Model by Calibration on Spatial Patterns With Multiple Satellite Data Sets [J].
Dembele, Moctar ;
Hrachowitz, Markus ;
Savenije, Hubert H. G. ;
Mariethoz, Gregoire ;
Schaefli, Bettina .
WATER RESOURCES RESEARCH, 2020, 56 (01)
[7]   One decade of multi-objective calibration approaches in hydrological modelling: a review [J].
Efstratiadis, Andreas ;
Koutsoyiannis, Demetris .
HYDROLOGICAL SCIENCES JOURNAL-JOURNAL DES SCIENCES HYDROLOGIQUES, 2010, 55 (01) :58-78
[8]   An overview of current applications, challenges, and future trends in distributed process-based models in hydrology [J].
Fatichi, Simone ;
Vivoni, Enrique R. ;
Ogden, Fred L. ;
Ivanov, Valeriy Y. ;
Mirus, Benjamin ;
Gochis, David ;
Downer, Charles W. ;
Camporese, Matteo ;
Davison, Jason H. ;
Ebel, Brian A. ;
Jones, Norm ;
Kim, Jongho ;
Mascaro, Giuseppe ;
Niswonger, Richard ;
Restrepo, Pedro ;
Rigon, Riccardo ;
Shen, Chaopeng ;
Sulis, Mauro ;
Tarboton, David .
JOURNAL OF HYDROLOGY, 2016, 537 :45-60
[9]   Differentiable, Learnable, Regionalized Process-Based Models With Multiphysical Outputs can Approach State-Of-The-Art Hydrologic Prediction Accuracy [J].
Feng, Dapeng ;
Liu, Jiangtao ;
Lawson, Kathryn ;
Shen, Chaopeng .
WATER RESOURCES RESEARCH, 2022, 58 (10)
[10]   From spatially variable streamflow to distributed hydrological models: Analysis of key modeling decisions [J].
Fenicia, Fabrizio ;
Kavetski, Dmitri ;
Savenije, Hubert H. G. ;
Pfister, Laurent .
WATER RESOURCES RESEARCH, 2016, 52 (02) :954-989