Investigating the Effectiveness of 3D Monocular Object Detection Methods for Roadside Scenarios

被引:0
作者
Barra, Silvio [1 ]
Marras, Mirko [2 ]
Mohamed, Sondos [2 ]
Podda, Alessandro Sebastian [2 ]
Saia, Roberto [2 ]
机构
[1] Univ Naples Federico II, Naples, Italy
[2] Univ Cagliari, Cagliari, Italy
来源
39TH ANNUAL ACM SYMPOSIUM ON APPLIED COMPUTING, SAC 2024 | 2024年
关键词
Object Detection; 3D Recognition; Smart City; Traffic Control;
D O I
10.1145/3605098.3636179
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Urban environments are demanding effective and efficient detection in 3D of objects using monocular cameras, e.g., for intelligent monitoring or decision support. The limited availability of large-scale roadside camera datasets and the mere focus of existing 3D object detection methods on autonomous driving scenarios pose significant challenges for their practical adoption, unfortunately. In this paper, we conduct a systematic analysis of 3D object detection methods, originally applied to autonomous driving scenarios, on monocular roadside images. Under a common evaluation protocol, based on a synthetic dataset with images from monocular roadside cameras located at intersection areas, we analyzed the detection quality achieved by these methods in the roadside context and the influence of key operational parameters. Our study finally highlights open challenges and future directions in this field.
引用
收藏
页码:221 / 223
页数:3
相关论文
共 50 条
  • [1] Aerial Monocular 3D Object Detection
    Hu, Yue
    Fang, Shaoheng
    Xie, Weidi
    Chen, Siheng
    IEEE ROBOTICS AND AUTOMATION LETTERS, 2023, 8 (04) : 1959 - 1966
  • [2] YOLOv7-3D: A Monocular 3D Traffic Object Detection Method from a Roadside Perspective
    Ye, Zixun
    Zhang, Hongying
    Gu, Jingliang
    Li, Xue
    APPLIED SCIENCES-BASEL, 2023, 13 (20):
  • [3] Uncertainty Prediction for Monocular 3D Object Detection
    Mun, Junghwan
    Choi, Hyukdoo
    SENSORS, 2023, 23 (12)
  • [4] Monocular 3D Object Detection With Motion Feature Distillation
    Hu, Henan
    Li, Muyu
    Zhu, Ming
    Gao, Wen
    Liu, Peiyu
    Chan, Kwok-Leung
    IEEE ACCESS, 2023, 11 : 82933 - 82945
  • [5] Shape-Aware Monocular 3D Object Detection
    Chen, Wei
    Zhao, Jie
    Zhao, Wan-Lei
    Wu, Song-Yuan
    IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, 2023, 24 (06) : 6416 - 6424
  • [6] MonoGRNet: A General Framework for Monocular 3D Object Detection
    Qin, Zengyi
    Wang, Jinglu
    Lu, Yan
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2022, 44 (09) : 5170 - 5184
  • [7] MonoSG: Monocular 3D Object Detection With Stereo Guidance
    Fan, Zhiwei
    Xu, Chao
    Chu, Minghang
    Huang, Yuling
    Ma, Yaoyao
    Wang, Jing
    Xu, Yishen
    Wu, Di
    IEEE ROBOTICS AND AUTOMATION LETTERS, 2025, 10 (04): : 3604 - 3611
  • [8] MonoSample: Synthetic 3D Data Augmentation Method in Monocular 3D Object Detection
    Qiao, Junchao
    Liu, Biao
    Yang, Jiaqi
    Wang, Baohua
    Xiu, Sanmu
    Du, Xin
    Nie, Xiaobo
    IEEE ROBOTICS AND AUTOMATION LETTERS, 2024, 9 (08): : 7326 - 7332
  • [9] MonoEF: Extrinsic Parameter Free Monocular 3D Object Detection
    Zhou, Yunsong
    He, Yuan
    Zhu, Hongzi
    Wang, Cheng
    Li, Hongyang
    Jiang, Qinhong
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2022, 44 (12) : 10114 - 10128
  • [10] CoBEV: Elevating Roadside 3D Object Detection With Depth and Height Complementarity
    Shi, Hao
    Pang, Chengshan
    Zhang, Jiaming
    Yang, Kailun
    Wu, Yuhao
    Ni, Huajian
    Lin, Yining
    Stiefelhagen, Rainer
    Wang, Kaiwei
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2024, 33 : 5424 - 5439