Exponential Separations in Symmetric Neural Networks

被引:0
作者
Zweig, Aaron [1 ]
Bruna, Joan [2 ]
机构
[1] NYU, Courant Inst Math Sci, New York, NY 10003 USA
[2] NYU, Ctr Data Sci, New York, NY USA
来源
ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 35 (NEURIPS 2022) | 2022年
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this work we demonstrate a novel separation between symmetric neural network architectures. Specifically, we consider the Relational Network [21] architecture as a natural generalization of the DeepSets [32] architecture, and study their representational gap. Under the restriction to analytic activation functions, we construct a symmetric function acting on sets of size N with elements in dimension D, which can be efficiently approximated by the former architecture, but provably requires width exponential in N and D for the latter.
引用
收藏
页数:12
相关论文
共 32 条
[1]  
[Anonymous], 2016, P MACHINE LEARNING R
[2]  
Bassey Joshua, 2021, ARXIV210112249
[3]   Parent Hamiltonians of Jastrow wavefunctions [J].
Beau, Mathieu ;
del Campo, Adolfo .
SCIPOST PHYSICS CORE, 2021, 4 (04)
[4]  
Chen Z., 2020, Advances in neural information processing systems, V33, P10383
[5]   Shape Completion using 3D-Encoder-Predictor CNNs and Shape Synthesis [J].
Dai, Angela ;
Qi, Charles Ruizhongtai ;
Niessner, Matthias .
30TH IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2017), 2017, :6545-6554
[6]  
Daniely Amit, 2017, PMLR, V65, P690
[7]   ON THE EIGENVALUES OF RANDOM MATRICES [J].
DIACONIS, P ;
SHAHSHAHANI, M .
JOURNAL OF APPLIED PROBABILITY, 1994, 31A :49-62
[8]  
Domokos Matyas, 2007, ARXIV07062154
[9]  
Garnett JB., 2007, BOUNDED ANAL FUNCTIO, V236
[10]  
Gilmer Justin, 2017, P MACHINE LEARNING R, V70