Explainable machine learning for predicting neurological outcome in hemorrhagic and ischemic stroke patients in critical care

被引:0
作者
Wei, Huawei [1 ]
Huang, Xingshuai [1 ]
Zhang, Yixuan [1 ]
Jiang, Guowei [1 ]
Ding, Ruifeng [1 ]
Deng, Mengqiu [1 ]
Wei, Liangtian [2 ]
Yuan, Hongbin [1 ]
机构
[1] Naval Med Univ, Changzheng Hosp, Affiliated Hosp 2, Dept Anesthesiol, Shanghai, Peoples R China
[2] Xuzhou Med Univ, Jiangsu Prov Key Lab Anesthesiol, Xuzhou, Peoples R China
来源
FRONTIERS IN NEUROLOGY | 2024年 / 15卷
关键词
critical care; machine learning; model interpretability; prediction model; stroke; MORTALITY; MANAGEMENT;
D O I
10.3389/fneur.2024.1385013
中图分类号
R74 [神经病学与精神病学];
学科分类号
摘要
Aim The objective of this study is to develop accurate machine learning (ML) models for predicting the neurological status at hospital discharge of critically ill patients with hemorrhagic and ischemic stroke and identify the risk factors associated with the neurological outcome of stroke, thereby providing healthcare professionals with enhanced clinical decision-making guidance.Materials and methods Data of stroke patients were extracted from the eICU Collaborative Research Database (eICU-CRD) for training and testing sets and the Medical Information Mart for Intensive Care IV (MIMIC IV) database for external validation. Four machine learning models, namely gradient boosting classifier (GBC), logistic regression (LR), multi-layer perceptron (MLP), and random forest (RF), were used for prediction of neurological outcome. Furthermore, shapley additive explanations (SHAP) algorithm was applied to explain models visually.Results A total of 1,216 hemorrhagic stroke patients and 954 ischemic stroke patients from eICU-CRD and 921 hemorrhagic stroke patients 902 ischemic stroke patients from MIMIC IV were included in this study. In the hemorrhagic stroke cohort, the LR model achieved the highest area under curve (AUC) of 0.887 in the test cohort, while in the ischemic stroke cohort, the RF model demonstrated the best performance with an AUC of 0.867 in the test cohort. Further analysis of risk factors was conducted using SHAP analysis and the results of this study were converted into an online prediction tool.Conclusion ML models are reliable tools for predicting hemorrhagic and ischemic stroke neurological outcome and have the potential to improve critical care of stroke patients. The summarized risk factors obtained from SHAP enable a more nuanced understanding of the reasoning behind prediction outcomes and the optimization of the treatment strategy.
引用
收藏
页数:14
相关论文
共 44 条
  • [1] BLACK-WHITE DIFFERENCES IN STROKE FREQUENCY - CHALLENGES FOR RESEARCH
    ALTER, M
    [J]. NEUROEPIDEMIOLOGY, 1994, 13 (06) : 301 - 307
  • [2] Aged lipid-laden microglia display impaired responses to stroke
    Arbaizar-Rovirosa, Maria
    Pedragosa, Jordi
    Lozano, Juan J.
    Casal, Carme
    Pol, Albert
    Gallizioli, Mattia
    Planas, Anna M.
    [J]. EMBO MOLECULAR MEDICINE, 2023, 15 (02)
  • [3] Admission sodium levels and hospital outcomes
    Chi, Cecilia
    Patel, Shivani
    Cheung, N. Wah
    [J]. INTERNAL MEDICINE JOURNAL, 2021, 51 (01) : 93 - 98
  • [4] Mortality and morbidity in acutely ill adults treated with liberal versus conservative oxygen therapy (IOTA): a systematic review and meta-analysis
    Chu, Derek K.
    Kim, Lisa H-Y
    Young, Paul J.
    Zamiri, Nima
    Almenawer, Saleh A.
    Jaeschke, Roman
    Szczeklik, Wojciech
    Schunemann, Holger J.
    Neary, John D.
    Alhazzani, Waleed
    [J]. LANCET, 2018, 391 (10131) : 1693 - 1705
  • [5] Global Critical Care: Moving Forward in Resource-Limited Settings
    Diaz, Janet, V
    Riviello, Elisabeth D.
    Papali, Alfred
    Adhikari, Neill K. J.
    Ferreira, Juliana C.
    [J]. ANNALS OF GLOBAL HEALTH, 2019, 85 (01):
  • [6] Blood pressure management in stroke
    Donovan, Anne L.
    Flexman, Alana M.
    Gelb, Adrian W.
    [J]. CURRENT OPINION IN ANESTHESIOLOGY, 2012, 25 (05) : 516 - 522
  • [7] Machine learning approach for hemorrhagic transformation prediction: Capturing predictors' interaction
    Elsaid, Ahmed F.
    Fahmi, Rasha M.
    Shehta, Nahed
    Ramadan, Bothina M.
    [J]. FRONTIERS IN NEUROLOGY, 2022, 13
  • [8] Feigin V.L., 2019, LANCET NEUROL, V18, P459, DOI DOI 10.1016/S1474-4422(18)30499-X
  • [9] Global, regional, and national burden of stroke and its risk factors, 1990-2019: a systematic analysis for the Global Burden of Disease Study 2019
    Feigin, Valery L.
    Stark, Benjamin A.
    Johnson, Catherine Owens
    Roth, Gregory A.
    Bisignano, Catherine
    Abady, Gdiom Gebreheat
    Abbasifard, Mitra
    Abbasi-Kangevari, Mohsen
    Abd-Allah, Foad
    Abedi, Vida
    Abualhasan, Ahmed
    Abu-Rmeileh, Niveen Me
    Abushouk, Abdelrahman, I
    Adebayo, Oladimeji M.
    Agarwal, Gina
    Agasthi, Pradyumna
    Ahinkorah, Bright Opoku
    Ahmad, Sohail
    Ahmadi, Sepideh
    Salih, Yusra Ahmed
    Aji, Budi
    Akbarpour, Samaneh
    Akinyemi, Rufus Olusola
    Al Hamad, Hanadi
    Alahdab, Fares
    Alif, Sheikh Mohammad
    Alipour, Vahid
    Aljunid, Syed Mohamed
    Almustanyir, Sami
    Al-Raddadi, Rajaa M.
    Salman, Rustam Al-Shahi
    Alvis-Guzman, Nelson
    Ancuceanu, Robert
    Anderlini, Deanna
    Anderson, Jason A.
    Ansar, Adnan
    Antonazzo, Ippazio Cosimo
    Arabloo, Jalal
    Arnlov, Johan
    Artanti, Kurnia Dwi
    Aryan, Zahra
    Asgari, Samaneh
    Ashraf, Tahira
    Athar, Mohammad
    Atreya, Alok
    Ausloos, Marcel
    Baig, Atif Amin
    Baltatu, Ovidiu Constantin
    Banach, Maciej
    Barboza, Miguel A.
    [J]. LANCET NEUROLOGY, 2021, 20 (10) : 795 - 820
  • [10] Age-induced alterations of granulopoiesis generate atypical neutrophils that aggravate stroke pathology
    Gullotta, Giorgia Serena
    De Feo, Donatella
    Friebel, Ekaterina
    Semerano, Aurora
    Scotti, Giulia Maria
    Bergamaschi, Andrea
    Butti, Erica
    Brambilla, Elena
    Genchi, Angela
    Capotondo, Alessia
    Gallizioli, Mattia
    Coviello, Simona
    Piccoli, Marco
    Vigo, Tiziana
    Della Valle, Patrizia
    Ronchi, Paola
    Comi, Giancarlo
    D'Angelo, Armando
    Maugeri, Norma
    Roveri, Luisa
    Uccelli, Antonio
    Becher, Burkhard
    Martino, Gianvito
    Bacigaluppi, Marco
    [J]. NATURE IMMUNOLOGY, 2023, 24 (06) : 925 - +