Optical Coherence Tomography Imaging by a Fully Integrated MOEMS Endomicroscopy Probe With Mirau Microinterferometer and Two-Axis Electrothermal Microscanner Using Lissajous Trajectory Scanning

被引:0
作者
Struk, Przemyslaw [1 ]
Bargiel, Sylwester [2 ]
Jozwik, Michal [3 ]
Mirecki, Bartosz [3 ]
Wojtkowski, Maciej [4 ,5 ]
Xie, Huikai [6 ]
Gorecki, Christophe [4 ,5 ]
机构
[1] Silesian Tech Univ, Dept Optoelect, Fac Elect Engn, PL-44100 Gliwice, Poland
[2] FEMTO ST Inst, F-25030 Besancon, France
[3] Warsaw Univ Technol, Inst Micromech & Photon, Fac Mechatron, PL-02525 Warsaw, Poland
[4] ICTER Int Ctr Translat Eye Res, PL-01230 Warsaw, Poland
[5] Polish Acad Sci, ICHF Inst Phys Chem, PL-01224 Warsaw, Poland
[6] Univ Florida, Dept Elect & Comp Engn, Gainesville, FL 32611 USA
关键词
Endomicroscopy probe; Lissajous scanning; micro-electromechanical systems (MEMS) two-axis electrothermal actuator; micro-opto-electromechanical systems (MOEMS) Mirau microinterferometer; optical coherence tomography (OCT); LOW-VOLTAGE; INTERFEROMETER; CANCER;
D O I
10.1109/JSEN.2024.3373223
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
This article presents the results of a study focused on the development of an integrated probe intended for endomicroscopic application. A new type of transverse scanning probe is described, which was built using Mirau microinterferometer fabricated in microopto-electromechanical systems (MOEMS) technology, and a two-axis electrothermal actuator fabricated in micro-electromechanical systems (MEMS) technology, connected with a gradient-index (GRIN) lens collimator and single-mode fiber. Herein, we present a numerical analysis and an optimization of endomicroscopic probe-scanning properties, based on Lissajous curves. The key part of this article is 2-D and 3-D imaging of phantom structures, based on polymer material, light-scattering material, and USAF-target pattern visualized with an endomicroscopy probe. The imaging was obtained by the swept source optical coherence tomography (SS-OCT) technique, working at a central wavelength lambda(c) = 1060 nm, a swept range Delta lambda = 100 nm, an A-scan rate f(a) = 200 kHz, and the scanning of samples with the use of Lissajous curves.
引用
收藏
页码:13903 / 13913
页数:11
相关论文
共 33 条
[1]  
Bouma BE, 2022, NAT REV METHOD PRIME, V2, DOI 10.1038/s43586-022-00162-2
[2]  
Brik U. J., 2017, Super-Resolution Microscopy: A Practical Guide
[3]  
Dougherty G., 2009, DIGITAL IMAGE PROCES, DOI DOI 10.1017/CBO9780511609657
[4]   Image Quality Analysis and Optical Performance Requirement for Micromirror-Based Lissajous Scanning Displays [J].
Du, Weiqi ;
Zhang, Gaofei ;
Ye, Liangchen .
SENSORS, 2016, 16 (05)
[5]  
Durini D., 2020, A volume in Woodhead Publishing Series in Electronic and Optical Materials, V2nd
[6]  
Fercher AF, 2003, REP PROG PHYS, V66, P239, DOI 10.2184/lsj.31.635
[7]   The future of early cancer detection [J].
Fitzgerald, Rebecca C. ;
Antoniou, Antonis C. ;
Fruk, Ljiljana ;
Rosenfeld, Nitzan .
NATURE MEDICINE, 2022, 28 (04) :666-677
[8]  
Fujimoto J, 2008, BIOL MED PHYS BIOMED, P1, DOI 10.1007/978-3-540-77550-8_1
[9]   Optical coherence tomography for ultrahigh resolution in vivo imaging [J].
Fujimoto, JG .
NATURE BIOTECHNOLOGY, 2003, 21 (11) :1361-1367
[10]   Optical coherence tomography: An emerging technology for biomedical imaging and optical biopsy [J].
Fujimoto, JG ;
Pitris, C ;
Boppart, SA ;
Brezinski, ME .
NEOPLASIA, 2000, 2 (1-2) :9-25