H2O2/acid self-supplying double-layer electrospun nanofibers based on ZnO2 and Fe3O4 nanoparticles for efficient catalytic therapy of wound infection

被引:0
|
作者
Yuwen, Lihui [1 ,2 ]
Lu, Pei [1 ,2 ]
Zhang, Qi [1 ,2 ]
Yang, Kaili [1 ,2 ]
Yin, Zhaowei [3 ]
Liang, Bin [3 ]
Wang, Lianhui [1 ,2 ]
机构
[1] Nanjing Univ Posts & Telecommun, Inst Adv Mat IAM, State Key Lab Organ Elect & Informat Displays, Nanjing 210023, Peoples R China
[2] Nanjing Univ Posts & Telecommun, Inst Adv Mat IAM, Jiangsu Key Lab Biosensors, Nanjing 210023, Peoples R China
[3] Nanjing Med Univ, Nanjing Hosp 1, Dept Orthopaed, Nanjing 210006, Peoples R China
基金
中国国家自然科学基金;
关键词
D O I
10.1039/d4tb00506f
中图分类号
TB3 [工程材料学]; R318.08 [生物材料学];
学科分类号
0805 ; 080501 ; 080502 ;
摘要
Catalytic therapy based on nanozymes is promising for the treatment of bacterial infections. However, its therapeutic efficacy is usually restricted by the limited amount of hydrogen peroxide and the weak acidic environment in infected tissues. To solve these issues, we prepared polyvinyl alcohol (PVA)-polyacrylic acid (PAA)-iron oxide (Fe3O4)/polyvinyl alcohol (PVA)-zinc peroxide (ZnO2) double-layer electrospun nanofibers (PPF/PZ NFs). In this design, PVA serves as the carrier for ZnO2 nanoparticles (NPs), Fe3O4 NPs, and PAA. The double-layer structure of nanofibers can spatially separate the PAA and ZnO2 to avoid their reaction with each other during preparation and storage, while in the wet wound bed, PVA can dissolve and PAA can provide H+ ions to promote the generation of hydrogen peroxide and subsequent conversion to hydroxyl radicals for bacteria killing. In vitro experimental results demonstrated that PPF/PZ NFs can reduce the methicillin-resistant Staphylococcus aureus by 3.1 log (99.92%). Moreover, PPF/PZ NFs can efficiently treat the bacterial infection in a mouse wound model and promote wound healing with negligible toxicity to animals, indicating their potential use as "plug-and-play" antibacterial wound dressings. This work provides a novel strategy for the construction of double-layer electrospun nanofibers as catalytic wound dressings with hydrogen peroxide/acid self-supplying properties for the efficient treatment of bacterial infections.
引用
收藏
页码:6164 / 6174
页数:11
相关论文
共 50 条
  • [1] H2O2 Self-supplying CaO2/CuO2/Fe3O4 Nanoplatform for Enhanced Chemodynamic Therapy of Cancer Cells
    Liu, Bojian
    Wang, Xiaohui
    Yang, Wei
    Peng, Hongshang
    Zhang, Hongxin
    CHEMNANOMAT, 2024, 10 (04)
  • [2] Synthesis of Copper Peroxide Nanodots for H2O2 Self-Supplying Chemodynamic Therapy
    Lin, Li-Sen
    Huang, Tao
    Song, Jibin
    Ou, Xiang-Yu
    Wang, Zhangtong
    Deng, Hongzhang
    Tian, Rui
    Liu, Yijing
    Wang, Jun-Feng
    Liu, Yuan
    Yu, Guocan
    Zhou, Zijian
    Wang, Sheng
    Niu, Gang
    Yang, Huang-Hao
    Chen, Xiaoyuan
    JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2019, 141 (25) : 9937 - 9945
  • [3] H2O2 self-supplying nanoparticles for chemodynamic and synergistic photodynamic therapy to augment cGAS/STING activation
    Zhang, Ai-Hong
    Kong, Wei-Chuang
    Zhang, Xiao-Lei
    Meng, Ya-Li
    Xin, Zhen-Hui
    Jia, Xiao-Juan
    Liu, Xu-Ying
    Kang, Yan-Fei
    NANOSCALE, 2025, 17 (13) : 7760 - 7771
  • [4] A double-gain theranostic nanoplatform based on self-supplying H2O2 nanocomposites for synergistic chemodynamic/gas therapy
    Wang, Li
    Ge, Kun
    Duan, Jiaqi
    Du, Xiaomeng
    Zhou, Guoqiang
    Ma, Lili
    Gao, Shutao
    Zhang, Jinchao
    JOURNAL OF COLLOID AND INTERFACE SCIENCE, 2024, 654 : 774 - 784
  • [5] Carbon dots/Fe3O4 hybrid nanofibers as efficient peroxidase mimics for sensitive detection of H2O2 and ascorbic acid
    Chen, Sihui
    Chi, Maoqiang
    Yang, Zezhou
    Gao, Mu
    Wang, Ce
    Lu, Xiaofeng
    INORGANIC CHEMISTRY FRONTIERS, 2017, 4 (10): : 1621 - 1627
  • [6] Electrochemical Detection of H2O2 Based on Fe3O4 Nanoparticles with Graphene Oxide and Polyamidoamine Dendrimer
    Xiao Yang
    Lina Wang
    Guizhong Zhou
    Ning Sui
    Yuanxiang Gu
    Jun Wan
    Journal of Cluster Science, 2015, 26 : 789 - 798
  • [7] Electrochemical Detection of H2O2 Based on Fe3O4 Nanoparticles with Graphene Oxide and Polyamidoamine Dendrimer
    Yang, Xiao
    Wang, Lina
    Zhou, Guizhong
    Sui, Ning
    Gu, Yuanxiang
    Wan, Jun
    JOURNAL OF CLUSTER SCIENCE, 2015, 26 (03) : 789 - 798
  • [8] Biodegradable Nanocatalyst with Self-Supplying Fenton-like Ions and H2O2 for Catalytic Cascade-Amplified Tumor Therapy
    Li, Wenting
    Zhou, Xinglu
    Liu, Shikai
    Zhou, Jialing
    Ding, He
    Gai, Shili
    Li, Rumin
    Zhong, Lei
    Jiang, Huijie
    Yang, Piaoping
    ACS APPLIED MATERIALS & INTERFACES, 2021, 13 (43) : 50760 - 50773
  • [9] Engineering H2O2 Self-Supplying Nanotheranostic Platform for Targeted and Imaging-Guided Chemodynamic Therapy
    Han, Yajing
    Ouyang, Jiang
    Li, Yazhou
    Wang, Fenglin
    Jiang, Jian-Hui
    ACS APPLIED MATERIALS & INTERFACES, 2020, 12 (01) : 288 - 297
  • [10] H2O2 self-supplying degradable epitope imprinted polymers for targeted fluorescence imaging and chemodynamic therapy
    Wang, Hai-Yan
    Su, Zheng-Chen
    He, Xi-Wen
    Li, Wen-You
    Zhang, Yu-Kui
    NANOSCALE, 2021, 13 (29) : 12553 - 12564