Pseudo-nanostructure and trapped-hole release induce high thermoelectric performance in PbTe

被引:66
作者
Jia, Baohai [1 ]
Wu, Di [2 ]
Xie, Lin [1 ]
Wang, Wu [1 ]
Yu, Tian [3 ]
Li, Shangyang [1 ]
Wang, Yan [1 ]
Xu, Yanjun [4 ]
Jiang, Binbin [5 ]
Chen, Zhiquan [3 ]
Weng, Yuxiang [4 ]
He, Jiaqing [1 ]
机构
[1] Southern Univ Sci & Technol, Dept Phys, Shenzhen Key Lab Thermoelectr Mat, Shenzhen 518055, Peoples R China
[2] Shaanxi Normal Univ, Sch Mat Sci & Engn, Key Lab Macromol Sci Shaanxi Prov, Xian 710119, Peoples R China
[3] Wuhan Univ, Dept Phys, Hubei Nucl Solid Phys Key Lab, Wuhan 430072, Peoples R China
[4] Chinese Acad Sci, Lab Soft Matter Phys, Beijing Natl Lab Condensed Matter Phys, Inst Phys, Beijing 100190, Peoples R China
[5] Univ Elect Sci & Technol China, Sch Mat & Energy, Chengdu 610054, Peoples R China
基金
中国国家自然科学基金;
关键词
ULTRALOW THERMAL-CONDUCTIVITY; TOTAL-ENERGY CALCULATIONS; POWER-GENERATION; DOPED PBTE; MTE M; EFFICIENCY; FIGURE; MERIT; PBSE; CONVERGENCE;
D O I
10.1126/science.adj8175
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Thermoelectric materials can realize direct and mutual conversion between electricity and heat. However, developing a strategy to improve high thermoelectric performance is challenging because of strongly entangled electrical and thermal transport properties. We demonstrate a case in which both pseudo-nanostructures of vacancy clusters and dynamic charge-carrier regulation of trapped-hole release have been achieved in p-type lead telluride-based materials, enabling the simultaneous regulations of phonon and charge carrier transports. We realized a peak zT value up to 2.8 at 850 kelvin and an average zT value of 1.65 at 300 to 850 kelvin. We also achieved an energy conversion efficiency of similar to 15.5% at a temperature difference of 554 kelvin in a segmented module. Our demonstration shows promise for mid-temperature thermoelectrics across a range of different applications.
引用
收藏
页码:81 / 86
页数:6
相关论文
共 43 条
[31]   Analysis and Implications of Structural Complexity in Low Lattice Thermal Conductivity High Thermoelectric Performance PbTe-PbSnS2 Composites [J].
Ioannidou, Chrysoula ;
Lioutas, Christos B. ;
Frangis, Nikolaos ;
Girard, Steven N. ;
Kanatzidis, Mercouri G. .
CHEMISTRY OF MATERIALS, 2016, 28 (11) :3771-3777
[32]   High performance of n-type (PbS)1-x-y(PbSe)x(PbTe)y thermoelectric materials [J].
Zhao, Minghui ;
Chang, Cheng ;
Xiao, Yu ;
Zhao, Li-Dong .
JOURNAL OF ALLOYS AND COMPOUNDS, 2018, 744 :769-777
[33]   Subtle Roles of Sb and S in Regulating the Thermoelectric Properties of N-Type PbTe to High Performance [J].
Tan, Gangjian ;
Stoumpos, Constantinos C. ;
Wang, Si ;
Bailey, Trevor P. ;
Zhao, Li-Dong ;
Uher, Ctirad ;
Kanatzidis, Mercouri G. .
ADVANCED ENERGY MATERIALS, 2017, 7 (18)
[34]   High Thermoelectric Performance of p-Type PbTe Enabled by the Synergy of Resonance Scattering and Lattice Softening [J].
Parashchuk, Taras ;
Wiendlocha, Bartlomiej ;
Cherniushok, Oleksandr ;
Knura, Rafal ;
Wojciechowski, Krzysztof T. .
ACS APPLIED MATERIALS & INTERFACES, 2021, 13 (41) :49027-49042
[35]   High Thermoelectric Performance Achieved in GeTe-Bi2Te3 Pseudo-Binary via Van der Waals Gap-Induced Hierarchical Ferroelectric Domain Structure [J].
Wu, Di ;
Xie, Lin ;
Xu, Xiao ;
He, Jiaqing .
ADVANCED FUNCTIONAL MATERIALS, 2019, 29 (18)
[36]   High thermoelectric performance due to nanoinclusions and randomly distributed interface potentials in N-type (PbTe0.93-xSe0.07Clx)0.93(PbS)0.07 composites [J].
Ginting, Dianta ;
Lin, Chan-Chieh ;
Rathnam, Lydia ;
Yun, Jae Hyun ;
Yu, Byung-Kyu ;
Kim, Sung-Jin ;
Rhyee, Jong-Soo .
JOURNAL OF MATERIALS CHEMISTRY A, 2017, 5 (26) :13535-13543
[37]   Band convergence and nanostructure modulations lead to high thermoelectric performance in SnPb0.04Te-y% AgSbTe2 [J].
Hong, Tao ;
Wang, Dongyang ;
Qin, Bingchao ;
Zhang, Xiao ;
Chen, Yongjin ;
Gao, Xiang ;
Zhao, Li-Dong .
MATERIALS TODAY PHYSICS, 2021, 21
[38]   An enhanced Seebeck coefficient and high thermoelectric performance in p-type In and Mg co-doped Sn1-xPbxTe via the co-adjuvant effect of the resonance level and heavy hole valence band [J].
Roychowdhury, Subhajit ;
Shenoy, U. Sandhya ;
Waghmare, Umesh V. ;
Biswas, Kanishka .
JOURNAL OF MATERIALS CHEMISTRY C, 2017, 5 (23) :5737-5748
[39]   Incompletely Decomposed In4SnSe4 Leads to High-Ranged Thermoelectric Performance in n-Type PbTe [J].
Shi, Haonan ;
Qin, Yongxin ;
Qin, Bingchao ;
Su, Lizhong ;
Wang, Yuping ;
Chen, Yongjin ;
Gao, Xiang ;
Liang, Hao ;
Ge, Zhen-Hua ;
Hong, Tao ;
Zhao, Li-Dong .
ADVANCED ENERGY MATERIALS, 2022, 12 (42)
[40]   High Performance Na-doped PbTe-PbS Thermoelectric Materials: Electronic Density of States Modification and Shape-Controlled Nanostructures [J].
Girard, Steven N. ;
He, Jiaqing ;
Zhou, Xiaoyuan ;
Shoemaker, Daniel ;
Jaworski, Christopher M. ;
Uher, Ctirad ;
Dravid, Vinayak P. ;
Heremans, Joseph P. ;
Kanatzidis, Mercouri G. .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2011, 133 (41) :16588-16597