MAEF-Net: MLP Attention for Feature Enhancement in U-Net based Medical Image Segmentation Networks

被引:5
作者
Zhang, Yunchu [1 ,2 ]
Dong, Jianfei [3 ]
机构
[1] Univ Sci & Technol China, Sch Biomed Engn Suzhou, Div Life Sci & Med, Suzhou 215163, Peoples R China
[2] Chinese Acad Sci, Suzhou Inst Biomed Engn & Technol, Suzhou 215163, Peoples R China
[3] Soochow Univ, Sch Future Sci & Engn, Suzhou 215222, Peoples R China
关键词
MLP; attention; U-Net; image segmentation; LIVER-TUMOR;
D O I
10.1109/JBHI.2023.3332908
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Medical image segmentation plays an important role in diagnosis. Since the introduction of U-Net, numerous advancements have been implemented to enhance its performance and expand its applicability. The advent of Transformers in computer vision has led to the integration of self-attention mechanisms into U-Net, resulting in significant breakthroughs. However, the inherent complexity of Transformers renders these networks computationally demanding and parameter-heavy. Recent studies have demonstrated that multilayer perceptrons (MLPs), with their simpler architecture, can achieve comparable performance to Transformers in natural language processing and computer vision tasks. Building upon these findings, we have enhanced the previously proposed "Enhanced-Feature-Four-Fold-Net" (EF3-Net) by introducing an MLP-attention block to learn long-range dependencies and expand the receptive field. This enhanced network is termed "MLP-Attention Enhanced-Feature-four-fold-Net", abbreviated as "MAEF-Net". To further enhance accuracy while reducing computational complexity, the proposed network incorporates additional efficient design elements. MAEF-Net was evaluated against several general and specialized medical image segmentation networks using four challenging medical image datasets. The results demonstrate that the proposed network exhibits high computational efficiency and comparable or superior performance to EF3-Net and several state-of-the-art methods, particularly in segmenting blurry objects.
引用
收藏
页码:846 / 857
页数:12
相关论文
共 50 条
  • [31] Medical Image Segmentation Using U-Net and Progressive Neuron Expansion
    Paheding, Sidike
    Reyes, Abel A.
    Alam, Mohammad
    Asari, Vijayan K.
    PATTERN RECOGNITION AND TRACKING XXXIII, 2022, 12101
  • [32] DRU-net: a novel U-net for biomedical image segmentation
    Hu, Xuegang
    Yang, Hongguang
    IET IMAGE PROCESSING, 2020, 14 (01) : 192 - 200
  • [33] Attention guided U-Net for accurate iris segmentation
    Lian, Sheng
    Luo, Zhiming
    Zhong, Zhun
    Lin, Xiang
    Su, Songzhi
    Li, Shaozi
    JOURNAL OF VISUAL COMMUNICATION AND IMAGE REPRESENTATION, 2018, 56 : 296 - 304
  • [34] Improved U-Net Based on Mixed Loss Function for Liver Medical Image Segmentation
    Huang Yongjia
    Shi Zaifeng
    Wang Zhongqi
    Wang Zhe
    LASER & OPTOELECTRONICS PROGRESS, 2020, 57 (22)
  • [35] Multiscale Attention U-Net for Skin Lesion Segmentation
    Alahmadi, Mohammad D.
    IEEE ACCESS, 2022, 10 : 59145 - 59154
  • [36] Design of Superpiexl U-Net Network for Medical Image Segmentation
    Wang H.
    Liu H.
    Guo Q.
    Deng K.
    Zhang C.
    Jisuanji Fuzhu Sheji Yu Tuxingxue Xuebao/Journal of Computer-Aided Design and Computer Graphics, 2019, 31 (06): : 1007 - 1017
  • [37] Modified Double U-Net Architecture for Medical Image Segmentation
    Deb, Sagar Deep
    Jha, Rajib Kumar
    IEEE TRANSACTIONS ON RADIATION AND PLASMA MEDICAL SCIENCES, 2023, 7 (02) : 151 - 162
  • [38] Medical Ultrasound Image Segmentation Using U-Net Architecture
    Shereena, V. B.
    Raju, G.
    ADVANCES IN COMPUTING AND DATA SCIENCES (ICACDS 2022), PT I, 2022, 1613 : 361 - 372
  • [39] IECAU-Net: A Wood Defects Image Segmentation Network Based on Improved Attention U-Net and Attention Mechanism
    Dong, Yingda
    He, Chunguang
    Xiang, Xiaoyang
    Cui, Yuhan
    Kang, Yongkang
    Ding, Aiming
    Duo, Huaqiong
    Wang, Ximing
    BIORESOURCES, 2025, 20 (02): : 3545 - 3556
  • [40] HEA-Net: Attention and MLP Hybrid Encoder Architecture for Medical Image Segmentation
    An, Lijing
    Wang, Liejun
    Li, Yongming
    SENSORS, 2022, 22 (18)