MAEF-Net: MLP Attention for Feature Enhancement in U-Net based Medical Image Segmentation Networks

被引:5
|
作者
Zhang, Yunchu [1 ,2 ]
Dong, Jianfei [3 ]
机构
[1] Univ Sci & Technol China, Sch Biomed Engn Suzhou, Div Life Sci & Med, Suzhou 215163, Peoples R China
[2] Chinese Acad Sci, Suzhou Inst Biomed Engn & Technol, Suzhou 215163, Peoples R China
[3] Soochow Univ, Sch Future Sci & Engn, Suzhou 215222, Peoples R China
关键词
MLP; attention; U-Net; image segmentation; LIVER-TUMOR;
D O I
10.1109/JBHI.2023.3332908
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Medical image segmentation plays an important role in diagnosis. Since the introduction of U-Net, numerous advancements have been implemented to enhance its performance and expand its applicability. The advent of Transformers in computer vision has led to the integration of self-attention mechanisms into U-Net, resulting in significant breakthroughs. However, the inherent complexity of Transformers renders these networks computationally demanding and parameter-heavy. Recent studies have demonstrated that multilayer perceptrons (MLPs), with their simpler architecture, can achieve comparable performance to Transformers in natural language processing and computer vision tasks. Building upon these findings, we have enhanced the previously proposed "Enhanced-Feature-Four-Fold-Net" (EF3-Net) by introducing an MLP-attention block to learn long-range dependencies and expand the receptive field. This enhanced network is termed "MLP-Attention Enhanced-Feature-four-fold-Net", abbreviated as "MAEF-Net". To further enhance accuracy while reducing computational complexity, the proposed network incorporates additional efficient design elements. MAEF-Net was evaluated against several general and specialized medical image segmentation networks using four challenging medical image datasets. The results demonstrate that the proposed network exhibits high computational efficiency and comparable or superior performance to EF3-Net and several state-of-the-art methods, particularly in segmenting blurry objects.
引用
收藏
页码:846 / 857
页数:12
相关论文
共 50 条
  • [21] CFU-Net: A Coarse-Fine U-Net With Multilevel Attention for Medical Image Segmentation
    Yin, Haitao
    Shao, Yudong
    IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2023, 72
  • [22] Modified U-Net for cytological medical image segmentation
    Benazzouz, Mourtada
    Benomar, Mohammed Lamine
    Moualek, Youcef
    INTERNATIONAL JOURNAL OF IMAGING SYSTEMS AND TECHNOLOGY, 2022, 32 (05) : 1761 - 1773
  • [23] Boundary Aware U-Net for Medical Image Segmentation
    Alahmadi, Mohammad D.
    ARABIAN JOURNAL FOR SCIENCE AND ENGINEERING, 2023, 48 (08) : 9929 - 9940
  • [24] Slim U-Net: Efficient Anatomical Feature Preserving U-net Architecture for Ultrasound Image Segmentation
    Raina, Deepak
    Verma, Kashish
    Chandrashekhara, Sheragaru Hanumanthappa
    Saha, Subir Kumar
    2022 9TH INTERNATIONAL CONFERENCE ON BIOMEDICAL AND BIOINFORMATICS ENGINEERING, ICBBE 2022, 2022, : 41 - 48
  • [25] Boundary Aware U-Net for Medical Image Segmentation
    Mohammad D. Alahmadi
    Arabian Journal for Science and Engineering, 2023, 48 : 9929 - 9940
  • [26] Recurrent residual U-Net for medical image segmentation
    Alom, Md Zahangir
    Yakopcic, Chris
    Hasan, Mahmudul
    Taha, Tarek M.
    Asari, Vijayan K.
    JOURNAL OF MEDICAL IMAGING, 2019, 6 (01)
  • [27] ELU-Net: An Efficient and Lightweight U-Net for Medical Image Segmentation
    Deng, Yunjiao
    Hou, Yulei
    Yan, Jiangtao
    Zeng, Daxing
    IEEE ACCESS, 2022, 10 : 35932 - 35941
  • [28] Enhanced U-Net: A Feature Enhancement Network for Polyp Segmentation
    Patel, Krushi
    Bur, Andres M.
    Wang, Guanghui
    2021 18TH CONFERENCE ON ROBOTS AND VISION (CRV 2021), 2021, : 181 - 188
  • [29] Multiscale feature U-Net for remote sensing image segmentation
    Wei, Youhua
    Liu, Xuzhi
    Lei, Jingxiong
    Yue, Ruihan
    Feng, Jun
    JOURNAL OF APPLIED REMOTE SENSING, 2022, 16 (01)
  • [30] CSCA U-Net: A channel and space compound attention CNN for medical image segmentation
    Shu, Xin
    Wang, Jiashu
    Zhang, Aoping
    Shi, Jinlong
    Wu, Xiao-Jun
    ARTIFICIAL INTELLIGENCE IN MEDICINE, 2024, 150