Room-temperature self-healing polyurethanes with high mechanical strength and superior toughness for sensor application

被引:2
|
作者
Yin, Xingshan [1 ,2 ]
Huang, Zhiyi [2 ]
Liu, Xiaochun [2 ]
Sun, Yingjuan [1 ,3 ]
Lin, Xiaofeng [1 ,2 ]
Lin, Wenjing [1 ,2 ]
Yi, Guobin [1 ,2 ,3 ]
机构
[1] Jieyang Ctr, Guangdong Prov Lab Chem & Fine Chem Engn, Jieyang 515200, Peoples R China
[2] Guangdong Univ Technol, Sch Chem Engn & Light Ind, Guangzhou, Peoples R China
[3] Guangdong Univ Technol, Sch Adv Mfg, Jieyang, Peoples R China
基金
中国国家自然科学基金;
关键词
elastomers; polyurethane; thermoplastics; ELASTOMERS; POLYMERS;
D O I
10.1002/app.55917
中图分类号
O63 [高分子化学(高聚物)];
学科分类号
070305 ; 080501 ; 081704 ;
摘要
It remains enormous challenges to balance the conflict between high strength and toughness mechanical properties and excellent room-temperature self-healing abilities of polyurethane elastomers. In this work, we report a recyclable room-temperature self-healing polyurethane elastomer with excellent mechanical properties. The prepared polyurethane elastomer (PU-DA-Zn0.50) exhibits high tensile strength of 15.33 MPa, high toughness of 76.77 MJ m-3, and high elongation at break of 1604.46% by introducing isophorone diamine (IPDA), 1-(3-aminopropyl) imidazole (IMZ) and zinc ions into polymer system to form a dynamic double-cross-linked structure (hydrogen bonds and Zn2+-imidazole coordination bonds). In addition, the tensile strength of fractured polyurethane can reach more than 80% of the original sample after 48 h of self-healing at room temperature without external stimuli, which is attributed to the kinetics of rapid exchange of Zn2+-imidazole coordination bonds at room temperature. It is worth noting that the balance between excellent mechanical properties and outstanding room-temperature self-healing ability can be optimized by adjusting the Zn2+-imidazole coordination bond density in the system. Moreover, the dynamic nature of the double-cross-linking network endows polyurethane with favorable recyclability. The above remarkable comprehensive performances reveal a great potential of PU-DA-Znx elastomer in the fields of wearable flexible electronic devices such as bionic skin, human motion monitoring, and soft robots. The dynamic nature of the double-cross-linking network endows polyurethane with excellent mechanical properties, outstanding room-temperature self-healing ability, and favorable recyclability. The above remarkable comprehensive performances reveal a great potential in the fields of flexible electronic devices. image
引用
收藏
页数:11
相关论文
共 50 条
  • [1] Room-temperature self-healing polyurethane elastomers with high strength and superior self-healing efficiency based on aromatic disulfide-induced
    Li, Yi
    Zhou, Ming
    Xia, Liangliang
    Yang, Xiaoling
    Shi, YongQiang
    COLLOIDS AND SURFACES A-PHYSICOCHEMICAL AND ENGINEERING ASPECTS, 2024, 681
  • [2] Room-Temperature Intrinsic Self-Healing Materials: A review
    Chen, Chong
    Shen, Ting
    Yang, Jie
    Cao, Wenkai
    Wei, Jiahong
    Li, Weihua
    CHEMICAL ENGINEERING JOURNAL, 2024, 498
  • [3] A high strength, high toughness and transparent room-temperature self-healing elastomer based on the synergy effect of quadruple dynamic bonding structure
    Rong, Haoxiang
    Wang, Minhui
    Zhang, Yanan
    Lu, Xun
    REACTIVE & FUNCTIONAL POLYMERS, 2023, 185
  • [4] Molecularly Engineered Tough and Room-Temperature Self-Healing Polyurethanes for Resistive Strain Sensors
    Zhang, Zebo
    Qiu, Jie
    Sha, Ye
    He, Yucheng
    Ma, Xiaofeng
    Li, Gefei
    Yang, Ruining
    Wang, Ruixin
    Zhang, Meng
    Luo, Yanlong
    Luo, Zhenyang
    ACS APPLIED POLYMER MATERIALS, 2024, 6 (07) : 3721 - 3731
  • [5] A review on room-temperature self-healing polyurethane: synthesis, self-healing mechanism and application
    Yupeng Li
    Yong Jin
    Wuhou Fan
    Rong Zhou
    Journal of Leather Science and Engineering, 4 (1):
  • [6] Self-antiglare waterborne coating with superior mechanical robustness and highly efficient room-temperature self-healing capability
    Huang, Huihua
    Zhou, Wei
    Zhong, Ziyuan
    Peng, Shuangshuang
    Peng, Xiaohong
    PROGRESS IN ORGANIC COATINGS, 2020, 146 (146)
  • [7] Superior Toughness and Fast Self-Healing at Room Temperature Engineered by Transparent Elastomers
    Kim, Seon-Mi
    Jeon, Hyeonyeol
    Shin, Sung-Ho
    Park, Seul-A
    Jegal, Jonggeon
    Hwang, Sung Yeon
    Oh, Dongyeop X.
    Park, Jeyoung
    ADVANCED MATERIALS, 2018, 30 (01)
  • [8] Preparation of room-temperature self-healing elastomers with high strength based on multiple dynamic bonds
    Zhang, Wencong
    Wang, Minhui
    Zhou, Jiahui
    Sheng, Yeming
    Xu, Min
    Jiang, Xiaolin
    Ma, Yuanhao
    Lu, Xun
    EUROPEAN POLYMER JOURNAL, 2021, 156
  • [9] Water-Enabled Room-Temperature Self-Healing and Recyclable Polyurea Materials with Super-Strong Strength, Toughness, and Large Stretchability
    Shi, Zhen
    Kang, Jing
    Zhang, Ling
    ACS APPLIED MATERIALS & INTERFACES, 2020, 12 (20) : 23484 - 23493
  • [10] Technologies for room-temperature self-healing polymer materials and their applications in energetic materials
    Hu, Xing -ling
    Xia, Min
    Zhang, Ming-hao
    Yang, Wei
    Yang, Fan-zhi
    Luo, Yun-jun
    ENERGETIC MATERIALS FRONTIERS, 2024, 5 (02): : 158 - 174