Foundation Intelligence for Smart Infrastructure Services in Transportation 5.0

被引:23
作者
Han, Xu [1 ,2 ]
Meng, Zonglin [1 ,2 ]
Xia, Xin [1 ,2 ]
Liao, Xishun [1 ,2 ]
He, Brian Yueshuai [1 ,2 ]
Zheng, Zhaoliang [1 ,2 ]
Wang, Yutong [3 ]
Xiang, Hao [1 ,2 ]
Zhou, Zewei [1 ,2 ]
Gao, Letian [1 ,2 ]
Fan, Lili [5 ]
Li, Yuke [4 ]
Ma, Jiaqi [1 ,2 ]
机构
[1] Univ Calif Los Angeles, UCLA Mobil Lab, Los Angeles, CA 90095 USA
[2] Univ Calif Los Angeles, FHWA Ctr Excellence New Mobil & Automated Vehicle, Los Angeles, CA 90095 USA
[3] Chinese Acad Sci, Inst Automat, State Key Lab Management & Control Complex Syst, Beijing 100045, Peoples R China
[4] Waytous Co Ltd, Beijing 100083, Peoples R China
[5] Beijing Inst Technol, Sch Informat & Elect, Beijing 100081, Peoples R China
来源
IEEE TRANSACTIONS ON INTELLIGENT VEHICLES | 2024年 / 9卷 / 01期
关键词
Foundation intelligence; foundation models; smart infrastructure; transportation; 5.0; MODEL;
D O I
10.1109/TIV.2023.3349324
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This perspective paper delves into the concept of foundation intelligence that shapes the future of smart infrastructure services as the transportation sector transitions into the era of Transportation 5.0. First, the discussion focuses on a suite of emerging technologies essential for foundation intelligence. These technologies encompass digital twinning, parallel intelligence, large vision-language models, traffic simulation and transportation systems modeling, vehicle-to-everything (V2X) connectivity, and decentralized/distributed systems. Next, the paper introduces the present landscape of Transportation 5.0 applications as illuminated by the foundational intelligence, and casts a vision towards the future including cooperative driving automation, smart intersection/infrastructure, parallel traffic management, virtual drivers, and mobility systems planning and operations, laying out prospects that are poised to redefine the mobility ecosystem. Last, through a comprehensive outlook, this paper aspires to offer a guiding framework for the intelligent evolution in data generation and model calibration, digital twinning and simulation, scenario development and experimentation, feedback loop for management and control, and continuous learning and adaptation, fostering safety, efficiency, reliability, and sustainability in the future smart transportation infrastructure.
引用
收藏
页码:39 / 47
页数:9
相关论文
共 42 条
[1]   A review of high-definition map creation methods for autonomous driving [J].
Bao, Zhibin ;
Hossain, Sabir ;
Lang, Haoxiang ;
Lin, Xianke .
ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 2023, 122
[2]   Autonomous Vehicles on the Edge: A Survey on Autonomous Vehicle Racing [J].
Betz, Johannes ;
Zheng, Hongrui ;
Liniger, Alexander ;
Rosolia, Ugo ;
Karle, Phillip ;
Behl, Madhur ;
Krovi, Venkat ;
Mangharam, Rahul .
IEEE OPEN JOURNAL OF INTELLIGENT TRANSPORTATION SYSTEMS, 2022, 3 :458-488
[3]   Milestones in Autonomous Driving and Intelligent Vehicles: Survey of Surveys [J].
Chen, Long ;
Li, Yuchen ;
Huang, Chao ;
Li, Bai ;
Xing, Yang ;
Tian, Daxin ;
Li, Li ;
Hu, Zhongxu ;
Na, Xiaoxiang ;
Li, Zixuan ;
Teng, Siyu ;
Lv, Chen ;
Wang, Jinjun ;
Cao, Dongpu ;
Zheng, Nanning ;
Wang, Fei-Yue .
IEEE TRANSACTIONS ON INTELLIGENT VEHICLES, 2023, 8 (02) :1046-1056
[4]   Bayesian Calibration of Traffic Flow Fundamental Diagrams Using Gaussian Processes [J].
Cheng, Zhanhong ;
Wang, Xudong ;
Chen, Xinyuan ;
Trepanier, Martin ;
Sun, Lijun .
IEEE OPEN JOURNAL OF INTELLIGENT TRANSPORTATION SYSTEMS, 2022, 3 :763-771
[5]   Chat With ChatGPT on Intelligent Vehicles: An IEEE TIV Perspective [J].
Du, Haiping ;
Teng, Siyu ;
Chen, Hong ;
Ma, Jiaqi ;
Wang, Xiao ;
Gou, Chao ;
Li, Bai ;
Ma, Siji ;
Miao, Qinghai ;
Na, Xiaoxiang ;
Ye, Peijun ;
Zhang, Hui ;
Luo, Guiyang ;
Wang, Fei-Yue .
IEEE TRANSACTIONS ON INTELLIGENT VEHICLES, 2023, 8 (03) :2020-2026
[6]   Fatality Prediction for Motor Vehicle Collisions: Mining Big Data Using Deep Learning and Ensemble Methods [J].
Emu, Mahzabeen ;
Kamal, Farjana Bintay ;
Choudhury, Salimur ;
Rahman, Quazi Abidur .
IEEE OPEN JOURNAL OF INTELLIGENT TRANSPORTATION SYSTEMS, 2022, 3 :199-209
[7]   Multi-Scale Model-Based Hierarchical Control of Freeway Traffic via Platoons of Connected and Automated Vehicles [J].
Ferrara, Antonella ;
Incremona, Gian Paolo ;
Birliba, Eugeniu ;
Goatin, Paola .
IEEE OPEN JOURNAL OF INTELLIGENT TRANSPORTATION SYSTEMS, 2022, 3 :799-812
[8]  
Garrett J. K., Tech. Rep. FHWA-JPO-18-631
[9]  
Greenshields B. D., 1935, HIGHWAY RES BOARD P, V14, P448
[10]   DRL-TP3: A learning and control framework for signalized intersections with mixed connected automated traffic [J].
Guo, Yi ;
Ma, Jiaqi .
TRANSPORTATION RESEARCH PART C-EMERGING TECHNOLOGIES, 2021, 132