Mechanism research of non-coding RNA in immune checkpoint inhibitors therapy

被引:4
作者
Bian, Jie [1 ]
Shao, Rui [2 ]
Li, Juan [1 ]
Zhu, Jing-Feng [3 ]
Shao, Ai-Zhong [3 ]
Liu, Chao [3 ]
Lu, L. V. [3 ]
Pan, Hui-Wen [3 ]
Shi, Yi-Jun [3 ]
Fang, Na [1 ]
机构
[1] Jiangsu Univ, Dept Oncol, Affiliated Peoples Hosp, Zhenjiang 212000, Peoples R China
[2] Jiangsu Univ, Dept Pathol, Affiliated Peoples Hosp, Zhenjiang, Peoples R China
[3] Jiangsu Univ, Dept Thorac & Cardiovasc Surg, Affiliated Peoples Hosp, Zhenjiang 212000, Peoples R China
关键词
ICIs; immune therapy; ncRNAs; PD-1; PD-1/PD-L1; axis; CELL LUNG-CANCER; ANTI-PD-1; RESISTANCE; OVARIAN-CANCER; PROGRESSION; EXPRESSION; MIR-138;
D O I
10.1111/cas.16309
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
Immune checkpoint inhibitor (ICI) therapies for tumors of different systems have attained significant achievements and have changed the current situation of tumor treatment due to their therapeutic characteristics of high specificity and low side effects. The immune checkpoint Programmed death 1/Programmed cell death-Ligand 1 (PD-1/PD-L1) axis exerts a vital role in the immune escape of tumor cells. As a result, it has become a key target for tumor immunotherapy. Therefore, to perfect research into potential regulatory factors for the PD-1/PD-L1 axis, in order to understand and illustrate tumor ICI therapy mechanisms, is a significant goal. Moreover, ncRNA has been verified to regulate the PD-1/PD-L1 axis in the tumor immune microenvironment to regulate tumor genesis and development. ncRNAs can improve or decrease the efficacy of ICI therapy by modulating PD-L1 expression. This review aimed to investigate the mechanisms of action of ncRNA in regulating the PD-1/PD-L1 axis in ICI therapy, to provide more efficient immunotherapy for tumors of different systems. Immune checkpoint inhibitor therapy can decrease the occurrence and development of cancer by inhibiting PD-1, PD-L1, CTLA-4 and other immune checkpoint molecules. ncRNAs can interfere with the PD-1/PD-L1 axis of immune checkpoint inhibitor therapy by binding to the mRNA of PD-L1, thus affecting the immune escape process of cancer cells.image
引用
收藏
页码:3520 / 3531
页数:12
相关论文
共 77 条
[1]   Non-coding RNA networks in cancer [J].
Anastasiadou, Eleni ;
Jacob, Leni S. ;
Slack, Frank J. .
NATURE REVIEWS CANCER, 2018, 18 (01) :5-18
[2]   Role of microRNA-33a in regulating the expression of PD-1 in lung adenocarcinoma [J].
Boldrini, Laura ;
Giordano, Mirella ;
Niccoli, Cristina ;
Melfi, Franca ;
Lucchi, Marco ;
Mussi, Alfredo ;
Fontanini, Gabriella .
CANCER CELL INTERNATIONAL, 2017, 17
[3]   Adenosine Methylation Level of miR-125a-5p Promotes Anti-PD-1 Therapy Escape through the Regulation of IGSF11/VSIG3 Expression [J].
Bougras-Cartron, Gwenola ;
Nadaradjane, Arulraj ;
Joalland, Marie-Pierre ;
Lalier-Bretaudeau, Lisenn ;
Raimbourg, Judith ;
Cartron, Pierre-Francois .
CANCERS, 2023, 15 (12)
[4]   The circular RNA circDLG1 promotes gastric cancer progression and anti-PD-1 resistance through the regulation of CXCL12 by sponging miR-141-3p [J].
Chen, Dong-Liang ;
Sheng, Hui ;
Zhang, Dong-Sheng ;
Jin, Ying ;
Zhao, Bai-Tian ;
Chen, Nuo ;
Song, Kang ;
Xu, Rui-Hua .
MOLECULAR CANCER, 2021, 20 (01)
[5]   LncRNA KCNQ1OT1 sponges miR-15a to promote immune evasion and malignant progression of prostate cancer via up-regulating PD-L1 [J].
Chen, Qi-Hua ;
Li, Bo ;
Liu, De-Guo ;
Zhang, Biao ;
Yang, Xian ;
Tu, Ya-Ling .
CANCER CELL INTERNATIONAL, 2020, 20 (01)
[6]   Cancer cell-derived exosomal circUSP7 induces CD8+ T cell dysfunction and anti-PD1 resistance by regulating the miR-934/SHP2 axis in NSCLC [J].
Chen, Shi-Wei ;
Zhu, Shu-Qiang ;
Pei, Xu ;
Qiu, Bai-Quan ;
Xiong, Dian ;
Long, Xiang ;
Lin, Kun ;
Lu, Feng ;
Xu, Jian-Jun ;
Wu, Yong-Bing .
MOLECULAR CANCER, 2021, 20 (01)
[7]   Widespread and Functional RNA Circularization in Localized Prostate Cancer [J].
Chen, Sujun ;
Huang, Vincent ;
Xu, Xin ;
Livingstone, Julie ;
Soares, Fraser ;
Jeon, Jouhyun ;
Zeng, Yong ;
Hua, Junjie Tony ;
Petricca, Jessica ;
Guo, Haiyang ;
Wang, Miranda ;
Yousif, Fouad ;
Zhang, Yuzhe ;
Donmez, Nilgun ;
Ahmed, Musaddeque ;
Volik, Stas ;
Lapuk, Anna ;
Chua, Melvin L. K. ;
Heisler, Lawrence E. ;
Foucal, Adrien ;
Fox, Natalie S. ;
Fraser, Michael ;
Bhandari, Vinayak ;
Shiah, Yu-Jia ;
Guan, Jiansheng ;
Li, Jixi ;
Orain, Michele ;
Picard, Valerie ;
Hovington, Helene ;
Bergeron, Alain ;
Lacombe, Louis ;
Fradet, Yves ;
Tetu, Bernard ;
Liu, Stanley ;
Feng, Felix ;
Wu, Xue ;
Shao, Yang W. ;
Komor, Malgorzata A. ;
Sahinalp, Cenk ;
Collins, Colin ;
Hoogstrate, Youri ;
de Jong, Mark ;
Fijneman, Remond J. A. ;
Fei, Teng ;
Jenster, Guido ;
van der Kwast, Theodorus ;
Bristow, Robert G. ;
Boutros, Paul C. ;
He, Housheng Hansen .
CELL, 2019, 176 (04) :831-+
[8]   Hypoxia-associated circPRDM4 promotes immune escape via HIF-1α regulation of PD-L1 in hepatocellular carcinoma [J].
Chen, Zhi-Qiang ;
Zuo, Xue-Liang ;
Cai, Juan ;
Zhang, Yao ;
Han, Guo-Yong ;
Zhang, Long ;
Ding, Wen-Zhou ;
Wu, Jin-Dao ;
Wang, Xue-Hao .
EXPERIMENTAL HEMATOLOGY & ONCOLOGY, 2023, 12 (01)
[9]   Pan-tumor genomic biomarkers for PD-1 checkpoint blockade-based immunotherapy [J].
Cristescu, Razvan ;
Mogg, Robin ;
Ayers, Mark ;
Albright, Andrew ;
Murphy, Erin ;
Yearley, Jennifer ;
Sher, Xinwei ;
Liu, Xiao Qiao ;
Lu, Hongchao ;
Nebozhyn, Michael ;
Zhang, Chunsheng ;
Lunceford, Jared ;
Joe, Andrew ;
Cheng, Jonathan ;
Webber, Andrea L. ;
Ibrahim, Nageatte ;
Plimack, Elizabeth R. ;
Ott, Patrick A. ;
Seiwert, Tanguy ;
Ribas, Antoni ;
McClanahan, Terrill K. ;
Tomassini, Joanne E. ;
Loboda, Andrey ;
Kaufman, David .
SCIENCE, 2018, 362 (6411) :197-+
[10]   A Tumor-suppressive Molecular Axis EP300/circRERE/ miR-6837-3p/MAVS Activates Type I IFN Pathway and Antitumor Immunity to Suppress Colorectal Cancer [J].
Ding, Nan ;
You, A. -Bin ;
Yang, Hu ;
Hu, Guo-Sheng ;
Lai, Chun-Ping ;
Liu, Wen ;
Ye, Feng .
CLINICAL CANCER RESEARCH, 2023, 29 (11) :2095-2109