Time-aware Embeddings of Clinical Data using a Knowledge Graph

被引:0
|
作者
Soman, Karthik [1 ]
Nelson, Charlotte A. [1 ]
Cerono, Gabriel [1 ]
Baranzini, Sergio E. [1 ]
机构
[1] Univ Calif San Francisco, Dept Neurol, Weill Inst Neurosci, San Francisco, CA 94143 USA
来源
BIOCOMPUTING 2023, PSB 2023 | 2023年
基金
美国国家科学基金会;
关键词
temporal embedding; knowledge graph; electronic health record; machine learning;
D O I
暂无
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Meaningful representations of clinical data using embedding vectors is a pivotal step to invoke any machine learning (ML) algorithm for data inference. In this article, we propose a time-aware embedding approach of electronic health records onto a biomedical knowledge graph for creating machine readable patient representations. This approach not only captures the temporal dynamics of patient clinical trajectories, but also enriches it with additional biological information from the knowledge graph. To gauge the predictivity of this approach, we propose an ML pipeline called TANDEM (Temporal and Non-temporal Dynamics Embedded Model) and apply it on the early detection of Parkinson's disease. TANDEM results in a classification AUC score of 0.85 on unseen test dataset. These predictions are further explained by providing a biological insight using the knowledge graph. Taken together, we show that temporal embeddings of clinical data could be a meaningful predictive representation for downstream ML pipelines in clinical decision-making.
引用
收藏
页码:97 / 108
页数:12
相关论文
共 50 条
  • [1] Time-aware Path Reasoning on Knowledge Graph for Recommendation
    Zhao, Yuyue
    Wang, Xiang
    Chen, Jiawei
    Wang, Yashen
    Tang, Wei
    He, Xiangnan
    Xie, Haiyong
    ACM TRANSACTIONS ON INFORMATION SYSTEMS, 2023, 41 (02)
  • [2] Time-Aware User Embeddings as a Service
    Pavlovski, Martin
    Gligorijevic, Jelena
    Stojkovic, Ivan
    Agrawal, Shubham
    Komirishetty, Shabhareesh
    Gligorijevic, Djordje
    Bhamidipati, Narayan
    Obradovic, Zoran
    KDD '20: PROCEEDINGS OF THE 26TH ACM SIGKDD INTERNATIONAL CONFERENCE ON KNOWLEDGE DISCOVERY & DATA MINING, 2020, : 3194 - 3202
  • [3] Time-Aware PolarisX: Auto-Growing Knowledge Graph
    Ahn, Yeon-Sun
    Jeong, Ok-Ran
    CMC-COMPUTERS MATERIALS & CONTINUA, 2021, 67 (03): : 2695 - 2708
  • [4] An effective Time-Aware Encoder for Temporal Knowledge Graph Reasoning
    Duan, Hao
    Jin, Haoyu
    Chen, Kang
    Du, Shaochong
    Fang, Tao
    Huo, Hong
    2022 5TH INTERNATIONAL CONFERENCE ON MACHINE LEARNING AND NATURAL LANGUAGE PROCESSING, MLNLP 2022, 2022, : 81 - 87
  • [5] Time-aware structure matching for temporal knowledge graph alignment
    Jia, Wei
    Ma, Ruizhe
    Yan, Li
    Niu, Weinan
    Ma, Zongmin
    DATA & KNOWLEDGE ENGINEERING, 2024, 151
  • [6] Hyperplane-based time-aware knowledge graph embedding for temporal knowledge graph completion
    He, Peng
    Zhou, Gang
    Liu, Hongbo
    Xia, Yi
    Wang, Ling
    JOURNAL OF INTELLIGENT & FUZZY SYSTEMS, 2022, 42 (06) : 5457 - 5469
  • [7] A Time-Aware Graph Attention Network for Temporal Knowledge Graphs Reasoning
    Cao, Shuxin
    Liu, Chengwei
    Zhu, Xiaoxu
    Li, Peifeng
    ADVANCED INTELLIGENT COMPUTING TECHNOLOGY AND APPLICATIONS, ICIC 2023, PT IV, 2023, 14089 : 40 - 51
  • [8] TARGAT: A Time-Aware Relational Graph Attention Model for Temporal Knowledge Graph Embedding
    Xie, Zhiwen
    Zhu, Runjie
    Liu, Jin
    Zhou, Guangyou
    Huang, Jimmy Xiangji
    IEEE-ACM TRANSACTIONS ON AUDIO SPEECH AND LANGUAGE PROCESSING, 2023, 31 : 2246 - 2258
  • [9] Time-aware Anonymization of Knowledge Graphs
    Hoang, Anh-Tu
    Carminati, Barbara
    Ferrari, Elena
    ACM TRANSACTIONS ON PRIVACY AND SECURITY, 2023, 26 (02)
  • [10] Enhance Temporal Knowledge Graph Completion via Time-Aware Attention Graph Convolutional Network
    Wei, Haohui
    Huang, Hong
    Zhang, Teng
    Shi, Xuanhua
    Jin, Hai
    MACHINE LEARNING AND KNOWLEDGE DISCOVERY IN DATABASES, ECML PKDD 2022, PT II, 2023, 13714 : 122 - 137