Strategic Predictions and Explanations By Machine Learning

被引:0
作者
Wu, Caesar [1 ]
Li, Jian [2 ,3 ]
Xu, Jingjing [4 ]
Bouvry, Pascal [4 ]
机构
[1] Univ Luxembourg, SnT, Fac Sci Technol & Med FSMT, Luxembourg, Luxembourg
[2] Univ Luxembourg, Luxembourg, Luxembourg
[3] Dongbei Univ Finance & Econ, Inst Adv Econ Res, Luxembourg, Luxembourg
[4] Univ Luxembourg, Fac Sci Technol & Med FSTM, Luxembourg, Luxembourg
来源
38TH INTERNATIONAL CONFERENCE ON INFORMATION NETWORKING, ICOIN 2024 | 2024年
关键词
Machine Learning; Telecommunication Services; Credit Default Swap; Tree-Based Learning; Deep Learning; Transformer; Gradient Boost Machine; High-Performance Computing; Prediction; FINANCIAL RATIOS; SPREADS;
D O I
10.1109/ICOIN59985.2024.10572058
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Many machine learning (ML) models can make predictions regarding credit default swaps (CDS) for the telecommunication (telco) service sector. However, some ML algorithms can only offer a black-box model. It is crucial to explain the prediction result for strategic decisions. We compare various the state of arts, including deep learning (transformers), gradient boost machine (GBM), and Xgboost, plus different explainable tools: Variable Importance (VI) Partial Dependent Plots (PDP), Local Individual Conditional Expectation (LIME), Interpretable Model-agnostic Explanations (ICE), and Shapley values for the prediction model. Moreover, we also conducted a hyperparameter search of the prediction model by leveraging high-performance computing (HPC). Our experiment results show that the Xgboost provides the best solution with fewer constraints. We aim to find an optimal solution for strategic CDS investment decisions.
引用
收藏
页码:268 / 273
页数:6
相关论文
共 32 条
[1]  
Abadie A, 2023, Arxiv, DOI [arXiv:2306.13681, 10.48550/arXiv.2306.13681, DOI 10.48550/ARXIV.2306.13681]
[2]   FINANCIAL RATIOS, DISCRIMINANT ANALYSIS AND PREDICTION OF CORPORATE BANKRUPTCY [J].
ALTMAN, EI .
JOURNAL OF FINANCE, 1968, 23 (04) :589-609
[3]   Machine Learning Methods That Economists Should Know About [J].
Athey, Susan ;
Imbens, Guido W. .
ANNUAL REVIEW OF ECONOMICS, VOL 11, 2019, 2019, 11 :685-725
[4]   Anchoring Credit Default Swap Spreads to Firm Fundamentals [J].
Bai, Jennie ;
Wu, Liuren .
JOURNAL OF FINANCIAL AND QUANTITATIVE ANALYSIS, 2016, 51 (05) :1521-1543
[5]   SmcHD1, containing a structural-maintenance-of-chromosomes hinge domain, has a critical role in X inactivation [J].
Blewitt, Marnie E. ;
Gendrel, Anne-Valerie ;
Pang, Zhenyi ;
Sparrow, Duncan B. ;
Whitelaw, Nadia ;
Craig, Jeffrey M. ;
Apedaile, Anwyn ;
Hilton, Douglas J. ;
Dunwoodie, Sally L. ;
Brockdorff, Neil ;
Kay, Graham F. ;
Whitelaw, Emma .
NATURE GENETICS, 2008, 40 (05) :663-669
[6]   Term structures of credit spreads with incomplete accounting information [J].
Duffie, D ;
Lando, D .
ECONOMETRICA, 2001, 69 (03) :633-664
[7]   Greedy function approximation: A gradient boosting machine [J].
Friedman, JH .
ANNALS OF STATISTICS, 2001, 29 (05) :1189-1232
[8]   Peeking Inside the Black Box: Visualizing Statistical Learning With Plots of Individual Conditional Expectation [J].
Goldstein, Alex ;
Kapelner, Adam ;
Bleich, Justin ;
Pitkin, Emil .
JOURNAL OF COMPUTATIONAL AND GRAPHICAL STATISTICS, 2015, 24 (01) :44-65
[9]   Predicting credit default swap prices with financial and pure data-driven approaches [J].
Guenduez, Yalin ;
Uhrig-Homburg, Marliese .
QUANTITATIVE FINANCE, 2011, 11 (12) :1709-1727
[10]  
He ZY, 2019, Arxiv, DOI [arXiv:1908.06951, DOI 10.48550/ARXIV.1908.06951]