TRIPOD plus AI statement: updated guidance for reporting clinical prediction models that use regression or machine learning methods

被引:253
作者
Collins, Gary S. [1 ]
Moons, Karel G. M. [2 ]
Dhiman, Paula [1 ]
Riley, Richard [3 ,4 ]
Beam, Andrew L. [5 ]
Van Calster, Ben [6 ,7 ]
Ghassemi, Marzyeh [8 ]
Liu, Xiaoxuan [9 ,10 ]
Reitsma, Johannes B. [2 ]
van Smeden, Maarten [2 ]
Boulesteix, Anne-Laure [11 ]
Camaradou, Jennifer Catherine [12 ,13 ]
Celi, Leo Anthony [14 ,15 ,16 ]
Denaxas, Spiros [17 ,18 ]
Denniston, Alastair K. [4 ,9 ]
Glocker, Ben [19 ]
Golub, Robert M. [20 ]
Harvey, Hugh [21 ]
Heinze, Georg [22 ]
Hoffman, Michael M. [23 ,24 ,25 ,26 ]
Kengne, Andre Pascal [27 ]
Lam, Emily [12 ]
Lee, Naomi [28 ]
Loder, Elizabeth W. [29 ,30 ]
Maier-Hein, Lena [31 ]
Mateen, Bilal A. [32 ,33 ]
McCradden, Melissa [34 ,35 ]
Oakden-Rayner, Lauren [36 ]
Ordish, Johan [37 ]
Parnell, Richard
Rose, Sherri [38 ,39 ]
Singh, Karandeep [40 ]
Wynants, Laure [41 ]
Logullo, Patricia [1 ]
机构
[1] Univ Oxford, Nuffield Dept Orthopaed Rheumatol & Musculoskelet, Ctr Stat Med, UK EQUATOR Ctr, Oxford OX3 7LD, England
[2] Univ Utrecht, Univ Med Ctr Utrecht, Julius Ctr Hlth Sci & Primary Care, Utrecht, Netherlands
[3] Univ Birmingham, Inst Appl Hlth Res, Coll Med & Dent Sci, Birmingham, England
[4] Natl Inst Hlth & Care Res NIHR, Birmingham Biomed Res Ctr, Birmingham, England
[5] Harvard T H Chan Sch Publ Hlth, Dept Epidemiol, Boston, MA USA
[6] Dept Dev & Regenerat, KU Leuven, Leuven, Belgium
[7] Leiden Univ, Med Ctr, Dept Biomed Data Sci, Leiden, Netherlands
[8] MIT, Dept Elect Engn & Comp Sci, Inst Med Engn & Sci, Cambridge, MA USA
[9] Univ Birmingham, Inst Inflammat & Ageing, Coll Med & Dent Sci, Birmingham, England
[10] Univ Hosp Birmingham NHS Fdn Trust, Birmingham, England
[11] Ludwig Maximilians Univ Munchen, Dept Med Informat Proc Biometry & Epidemiol, Munich, Germany
[12] Hlth Data Res UK Patient & Publ Involvement & Enga, Norfolk, England
[13] Univ East Anglia, Fac Hlth Sci, Norwich Res Pk, Norwich, England
[14] Beth Israel Deaconess Med Ctr, Boston, MA USA
[15] MIT, Lab Computat Physiol, Cambridge, MA USA
[16] Harvard T H Chan Sch Publ Hlth, Dept Biostat, Boston, MA USA
[17] UCL, Inst Hlth Informat, London, England
[18] British Heart Fdn Data Sci Ctr, London, England
[19] Imperial Coll London, Dept Comp, London, England
[20] Northwestern Univ, Feinberg Sch Med, Chicago, IL USA
[21] Hardian Hlth, Haywards Heath, England
[22] Med Univ Vienna, Ctr Med Data Sci, Sect Clin Biometr, Vienna, Austria
[23] Univ Hlth Network, Princess Margaret Canc Ctr, Toronto, ON, Canada
[24] Univ Toronto, Dept Med Biophys, Toronto, ON, Canada
[25] Univ Toronto, Dept Comp Sci, Toronto, ON, Canada
[26] Vector Inst Artificial Intelligence, Toronto, ON, Canada
[27] Univ Cape Town, Dept Med, Cape Town, South Africa
[28] Natl Inst Hlth & Care Excellence, London, England
[29] The BMJ, London, England
[30] Harvard Med Sch, Brigham & Womens Hosp, Dept Neurol, Boston, MA USA
[31] German Canc Res Ctr, Dept Intelligent Med Syst, Heidelberg, Germany
[32] Wellcome Trust Res Labs, London, England
[33] Alan Turing Inst, London, England
[34] Hosp Sick Children, Dept Bioeth, Toronto, ON, Canada
[35] SickKids, Res Inst, Genet & Genome Biol, Toronto, ON, Canada
[36] Univ Adelaide, Australian Inst Machine Learning, Adelaide, SA, Australia
[37] Med & Healthcare Prod Regulatory Agcy, London, England
[38] Stanford Univ, Dept Hlth Policy, Stanford, CA USA
[39] Stanford Univ, Ctr Hlth Policy, Stanford, CA USA
[40] Univ Michigan, Med Sch, Dept Learning Hlth Sci, Ann Arbor, MI USA
[41] Maastricht Univ, CAPHRI Care & Publ Hlth Res Inst, Dept Epidemiol, Maastricht, Netherlands
来源
BMJ-BRITISH MEDICAL JOURNAL | 2024年 / 385卷
基金
英国科研创新办公室; 英国工程与自然科学研究理事会;
关键词
HEALTH-CARE; RISK; APPLICABILITY; GUIDELINE; DIAGNOSIS; ONCOLOGY; PROBAST; BIAS; TOOL;
D O I
10.1136/bmj-2023-078378
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
The TRIPOD (Transparent Reporting of a multivariable prediction model for Individual Prognosis Or Diagnosis) statement was published in 2015 to provide the minimum reporting recommendations for studies developing or evaluating the performance of a prediction model. Methodological advances in the field of prediction have since included the widespread use of artificial intelligence (AI) powered by machine learning methods to develop prediction models. An update to the TRIPOD statement is thus needed. TRIPOD+AI provides harmonised guidance for reporting prediction model studies, irrespective of whether regression modelling or machine learning methods have been used. The new checklist supersedes the TRIPOD 2015 checklist, which should no longer be used. This article describes the development of TRIPOD+AI and presents the expanded 27 item checklist with more detailed explanation of each reporting recommendation, and the TRIPOD+AI for Abstracts checklist. TRIPOD+AI aims to promote the complete, accurate, and transparent reporting of studies that develop a prediction model or evaluate its performance. Complete reporting will facilitate study appraisal, model evaluation, and model implementation.
引用
收藏
页数:14
相关论文
共 95 条
[1]   EQUATOR: reporting guidelines for health research [J].
Altman, Douglas G. ;
Simera, Iveta ;
Hoey, John ;
Moher, David ;
Schutz, Ken .
LANCET, 2008, 371 (9619) :1149-1150
[2]   Machine learning for the prediction of toxicities from head and neck cancer treatment: A systematic review with meta-analysis [J].
Araujo, Anna Luiza Damaceno ;
Moraes, Matheus Cardoso ;
Perez-di-Oliveira, Maria Eduarda ;
da Silva, Viviane Mariano ;
Saldivia-Siracusa, Cristina ;
Pedroso, Caique Mariano ;
Lopes, Marcio Ajudarte ;
Vargas, Pablo Agustin ;
Kochanny, Sara ;
Pearson, Alexander ;
Khurram, Syed Ali ;
Kowalski, Luiz Paulo ;
Migliorati, Cesar Augusto ;
Santos-Silva, Alan Roger .
ORAL ONCOLOGY, 2023, 140
[3]   Minimum sample size for external validation of a clinical prediction model with a continuous outcome [J].
Archer, Lucinda ;
Snell, Kym I. E. ;
Ensor, Joie ;
Hudda, Mohammed T. ;
Collins, Gary S. ;
Riley, Richard D. .
STATISTICS IN MEDICINE, 2021, 40 (01) :133-146
[4]   Prognostic models for outcome prediction in patients with chronic obstructive pulmonary disease: systematic review and critical appraisal [J].
Bellou, Vanesa ;
Belbasis, Lazaros ;
Konstantinidis, Athanasios K. ;
Tzoulaki, Ioanna ;
Evangelou, Evangelos .
BMJ-BRITISH MEDICAL JOURNAL, 2019, 367
[5]   Reporting and Methods in Clinical Prediction Research: A Systematic Review [J].
Bouwmeester, Walter ;
Zuithoff, Nicolaas P. A. ;
Mallett, Susan ;
Geerlings, Mirjam I. ;
Vergouwe, Yvonne ;
Steyerberg, Ewout W. ;
Altman, Douglas G. ;
Moons, Karel G. M. .
PLOS MEDICINE, 2012, 9 (05)
[6]   PRISMA AI reporting guidelines for systematic reviews and meta-analyses on AI in healthcare [J].
Cacciamani, Giovanni E. ;
Chu, Timothy N. ;
Sanford, Daniel I. ;
Abreu, Andre ;
Duddalwar, Vinay ;
Oberai, Assad ;
Kuo, C. -C. Jay ;
Liu, Xiaoxuan ;
Denniston, Alastair K. ;
Vasey, Baptiste ;
McCulloch, Peter ;
Wolff, Robert F. ;
Mallett, Sue ;
Mongan, John ;
Kahn, Charles E. ;
Sounderajah, Viknesh ;
Darzi, Ara ;
Dahm, Philipp ;
Moons, Karel G. M. ;
Topol, Eric ;
Collins, Gary S. ;
Moher, David ;
Gill, Inderbir S. ;
Hung, Andrew J. .
NATURE MEDICINE, 2023, 29 (01) :14-15
[7]   Commentary: Patient Perspectives on Artificial Intelligence; What have We Learned and How Should We Move Forward? [J].
Camaradou, Jennifer Catherine Louise ;
Hogg, Henry David Jeffry .
ADVANCES IN THERAPY, 2023, 40 (06) :2563-2572
[8]   Ethical Machine Learning in Healthcare [J].
Chen, Irene Y. ;
Pierson, Emma ;
Rose, Sherri ;
Joshi, Shalmali ;
Ferryman, Kadija ;
Ghassemi, Marzyeh .
ANNUAL REVIEW OF BIOMEDICAL DATA SCIENCE, VOL 4, 2021, 4 :123-144
[9]   A systematic review shows no performance benefit of machine learning over logistic regression for clinical prediction models [J].
Christodoulou, Evangelia ;
Ma, Jie ;
Collins, Gary S. ;
Steyerberg, Ewout W. ;
Verbakel, Jan Y. ;
Van Calster, Ben .
JOURNAL OF CLINICAL EPIDEMIOLOGY, 2019, 110 :12-22
[10]   Evaluation of clinical prediction models (part 1): from development to external validation [J].
Collins, Gary S. ;
Dhiman, Paula ;
Ma, Jie ;
Schlussel, Michael M. ;
Archer, Lucinda ;
Van Calster, Ben ;
Harrell Jr, Frank E. ;
Martin, Glen P. ;
Moons, Karel G. M. ;
van Smeden, Maarten ;
Sperrin, Matthew ;
Bullock, Garrett S. ;
Riley, Richard .
BMJ-BRITISH MEDICAL JOURNAL, 2024, 384