Real-time lidar feature detection using convolutional neural networks

被引:0
作者
McGill, Matthew J. [1 ]
Roberson, Stephen D. [2 ]
Ziegler, William [2 ]
Smith, Ron [2 ]
Yorks, John E. [3 ]
机构
[1] Univ Iowa, Dept Chem & Biochem Engn, Iowa City, IA 52242 USA
[2] 4S Silversword Software & Serv LLC, 5520 Res Pk Dr,Suite 230, Baltimore, MD 21228 USA
[3] Goddard Space Flight Ctr, Code 612, Greenbelt, MD 20771 USA
来源
LASER RADAR TECHNOLOGY AND APPLICATIONS XXIX | 2024年 / 13049卷
关键词
lidar; aerosols; plume detection; air quality; machine learning; drones; CALIBRATION; ASSIMILATION;
D O I
10.1117/12.3013563
中图分类号
TP7 [遥感技术];
学科分类号
081102 ; 0816 ; 081602 ; 083002 ; 1404 ;
摘要
A limitation of traditional airborne and spaceborne lidar instruments is the inability to provide data products in real time. This challenge is compounded by typical research-driven desires to build ever more complicated lidar sensors, which overlooks the need to provide simple, but timely, data products to operational forecast models. Machine learning techniques using convolution neural networks (CNNs) have been developed and applied to single wavelength (e.g., 1064 nm) data from the airborne Cloud Physics Lidar (CPL) and have shown encouraging results for feature detection at finer resolutions compared to traditional methods, notably during noisy daytime conditions. Current technologies and properly scoped measurement goals, not intended as be-all/end-all research tools, permit designs for miniaturized lidar sensors that can be placed on drones and, ultimately, in constellations of minisats. Use of advanced machine learning techniques for data processing permits generation of real time data products that can be quickly assimilated into predictive models (for air quality and human health) and for generating real-time data products for decision making (such as hazardous plume detection and monitoring).
引用
收藏
页数:8
相关论文
共 23 条
[1]  
Escribano J., 2021, Atmospheric Chemistry and Physics Discussions, P1
[2]   CALIPSO lidar calibration at 532 nm: version 4 daytime algorithm [J].
Getzewich, Brian J. ;
Vaughan, Mark A. ;
Hunt, William H. ;
Avery, Melody A. ;
Powell, Kathleen A. ;
Tackett, Jason L. ;
Winker, David M. ;
Kar, Jayanta ;
Lee, Kam-Pui ;
Toth, Travis D. .
ATMOSPHERIC MEASUREMENT TECHNIQUES, 2018, 11 (11) :6309-6326
[3]   Using CATS near-real-time lidar observations to monitor and constrain volcanic sulfur dioxide (SO2) forecasts [J].
Hughes, E. J. ;
Yorks, J. ;
Krotkov, N. A. ;
da Silva, A. M. ;
McGill, M. .
GEOPHYSICAL RESEARCH LETTERS, 2016, 43 (20) :11089-11097
[4]  
Janiskova M., 2010, ESA Executive Summary Report
[5]   CALIPSO lidar calibration at 532 nm: version 4 nighttime algorithm [J].
Kar, Jayanta ;
Vaughan, Mark A. ;
Lee, Kam-Pui ;
Tackett, Jason L. ;
Avery, Melody A. ;
Garnier, Anne ;
Getzewich, Brian J. ;
Hunt, William H. ;
Josset, Damien ;
Liu, Zhaoyan ;
Lucker, Patricia L. ;
Magill, Brian ;
Omar, Ali H. ;
Pelon, Jacques ;
Rogers, Raymond R. ;
Toth, Travis D. ;
Trepte, Charles R. ;
Vernier, Jean-Paul ;
Winker, David M. ;
Young, Stuart A. .
ATMOSPHERIC MEASUREMENT TECHNIQUES, 2018, 11 (03) :1459-1479
[6]   Air pollution inputs to the Mojave Desert by fusing surface mobile and airborne in situ and airborne and satellite remote sensing: A case study of interbasin transport with numerical model validation [J].
Leifer, Ira ;
Melton, Christopher ;
Chatfield, Robert ;
Cui, Xinguang ;
Fischer, Marc L. ;
Fladeland, Matthew ;
Gore, Warren ;
Hlavka, Dennis L. ;
Iraci, Laura T. ;
Marrero, Josette ;
Ryoo, Ju-Mee ;
Tanaka, Tomoaki ;
Yates, Emma ;
Yorks, John E. .
ATMOSPHERIC ENVIRONMENT, 2020, 224
[7]   Estimating the impact of the 2004 Alaskan forest fires on episodic particulate matter pollution over the eastern United States through assimilation of satellite-derived aerosol optical depths in a regional air quality model [J].
Mathur, Rohit .
JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 2008, 113 (D17)
[8]   Cloud Physics Lidar: instrument description and initial measurement results [J].
McGill, M ;
Hlavka, D ;
Hart, W ;
Scott, VS ;
Spinhirne, J ;
Schmid, B .
APPLIED OPTICS, 2002, 41 (18) :3725-3734
[9]   Machine learning-enabled real-time detection of cloud and aerosol layers using airborne lidar [J].
Mcgill, Matthew J. ;
Selmer, Patrick A. ;
Kupchock, Andrew W. ;
Yorks, John E. .
FRONTIERS IN REMOTE SENSING, 2023, 4
[10]   Observation and quantification of aerosol outflow from southern Africa using spaceborne lidar [J].
McGill, Matthew J. ;
Swap, Robert J. ;
Yorks, John E. ;
Selmer, Patrick A. ;
Piketh, Stuart J. .
SOUTH AFRICAN JOURNAL OF SCIENCE, 2020, 116 (3-4) :65-70