Self-Optimizing Flow Reactions for Sustainability: An Experimental Bayesian Optimization Study

被引:1
作者
Wagner, Florian L. [1 ,2 ]
Sagmeister, Peter [1 ,2 ]
Tampone, Thomas G. [3 ]
Manee, Vidhyadhar [3 ]
Yerkozhanov, Dauzhan [3 ]
Buono, Frederic G. [3 ]
Williams, Jason D. [1 ,2 ]
Kappe, C. Oliver [1 ,2 ]
机构
[1] Res Ctr Pharmaceut Engn GmbH RCPE, Ctr Continuous Flow Synth & Proc CCFLOW, A-8010 Graz, Austria
[2] Karl Franzens Univ Graz, Inst Chem, A-8010 Graz, Austria
[3] Boehringer Ingelheim Pharmaceut Inc, Chem Dev US, Ridgefield, CT 06877 USA
来源
ACS SUSTAINABLE CHEMISTRY & ENGINEERING | 2024年 / 12卷 / 26期
关键词
flow chemistry; automation; process development; Bayesian optimization; benchmarking; THROUGHPUT EXPERIMENTATION; AUTOMATED OPTIMIZATION; COUPLING REAGENTS; SYSTEM;
D O I
10.1021/acssuschemeng.4c03253
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Self-optimizing flow reactors have received significant attention in recent years, with Bayesian optimization (BO) being identified as the most effective method for reaction optimization. However, there are many different approaches using BO algorithms, which is overwhelming for experimentalists. Here, using pharmaceutically relevant amide coupling reactions, we explore "best practices" in three areas, to promote the efficient design of sustainable processes: (1) A high extent of exploration in an optimization algorithm was deemed necessary to ensure a good design space overview. (2) Yield was optimized within a small experimental budget, while minimizing environmental impact, by setting up an objective function with penalties (e.g., for excess reagent usage). (3) An optimization algorithm using an auxiliary data set appeared to behave well for the same substrates using a different coupling reagent, but provided no advantage when using substrates with substantially lower reactivity. We envisage that these general recommendations will aid flow chemists utilizing BO for automated development of sustainable reactions.
引用
收藏
页码:10002 / 10010
页数:9
相关论文
共 50 条
  • [1] Reconfigurable Flow Platform for Automated Reagent Screening and Autonomous Optimization for Bioinspired Lignans Synthesis
    Aka, Ehu Camille
    Wimmer, Eric
    Barre, Elvina
    Vasudevan, Natarajan
    Cortes-Borda, Daniel
    Ekou, Tchirioua
    Ekou, Lynda
    Rodriguez-Zubiri, Mireia
    Felpin, Francois-Xavier
    [J]. JOURNAL OF ORGANIC CHEMISTRY, 2019, 84 (21) : 14101 - 14112
  • [2] Machine learning and molecular descriptors enable rational solvent selection in asymmetric catalysis
    Amar, Yehia
    Schweidtmann, ArturM.
    Deutsch, Paul
    Cao, Liwei
    Lapkin, Alexei
    [J]. CHEMICAL SCIENCE, 2019, 10 (27) : 6697 - 6706
  • [3] Use of a Droplet Platform To Optimize Pd-Catalyzed C-N Coupling Reactions Promoted by Organic Bases
    Baumgartner, Lorenz M.
    Dennis, Joseph M.
    White, Nicholas A.
    Buchwald, Stephen L.
    Jensen, Klays F.
    [J]. ORGANIC PROCESS RESEARCH & DEVELOPMENT, 2019, 23 (08) : 1594 - 1601
  • [4] Reconfigurable system for automated optimization of diverse chemical reactions
    Bedard, Anne-Catherine
    Adamo, Andrea
    Aroh, Kosi C.
    Russell, M. Grace
    Bedermann, Aaron A.
    Torosian, Jeremy
    Yue, Brian
    Jensen, Klavs F.
    Jamison, Timothy F.
    [J]. SCIENCE, 2018, 361 (6408) : 1220 - +
  • [5] Revisiting the Paradigm of Reaction Optimization in Flow with a Priori Computational Reaction Intelligence
    Bianchi, Pauline
    Monbaliu, Jean-Christophe M.
    [J]. ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2024, 63 (05)
  • [6] Suppressing catalyst poisoning in the carbodiimide-fueled reaction cycle
    Chen, Xiaoyao
    Soria-Carrera, Hector
    Zozulia, Oleksii
    Boekhoven, Job
    [J]. CHEMICAL SCIENCE, 2023, 14 (44) : 12653 - 12660
  • [7] Bayesian Self-Optimization for Telescoped Continuous Flow Synthesis
    Clayton, Adam D.
    Pyzer-Knapp, Edward O.
    Purdie, Mark
    Jones, Martin F.
    Barthelme, Alexandre
    Pavey, John
    Kapur, Nikil
    Chamberlain, Thomas W.
    Blacker, A. John
    Bourne, Richard A.
    [J]. ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2023, 62 (03)
  • [8] Automated self-optimisation of multi-step reaction and separation processes using machine learning
    Clayton, Adam D.
    Schweidtmann, Artur M.
    Clemens, Graeme
    Manson, Jamie A.
    Taylor, Connor J.
    Nino, Carlos G.
    Chamberlain, Thomas W.
    Kapur, Nikil
    Blacker, A. John
    Lapkin, Alexei A.
    Bourne, Richard A.
    [J]. CHEMICAL ENGINEERING JOURNAL, 2020, 384 (384)
  • [9] Algorithms for the self-optimisation of chemical reactions
    Clayton, Adam D.
    Manson, Jamie A.
    Taylor, Connor J.
    Chamberlain, Thomas W.
    Taylor, Brian A.
    Clemens, Graeme
    Bourne, Richard A.
    [J]. REACTION CHEMISTRY & ENGINEERING, 2019, 4 (09): : 1545 - 1554
  • [10] Numerical studies of space-filling designs: optimization of Latin Hypercube Samples and subprojection properties
    Damblin, G.
    Couplet, M.
    Iooss, B.
    [J]. JOURNAL OF SIMULATION, 2013, 7 (04) : 276 - 289