Prefrontal cortex drives the flexibility of whole-brain orchestration of cognition

被引:2
作者
Kringelbach, Morten L. [1 ,2 ,3 ]
Deco, Gustavo [4 ,5 ]
机构
[1] Univ Oxford, Linacre Coll, Ctr Eudaimonia & Human Flourishing, Oxford, England
[2] Univ Oxford, Dept Psychiat, Oxford, England
[3] Aarhus Univ, Ctr Mus Brain, Dept Clin Med, Aarhus, Denmark
[4] Univ Pompeu Fabra, Ctr Brain & Cognit, Computat Neurosci Grp, Dept Informat & Commun Technol, Roc Boronat 138, Barcelona 08018, Spain
[5] Inst Catalana Recerca & Estudis Avancats ICREA, Passeig Lluis Co 23, Barcelona 08010, Spain
基金
新加坡国家研究基金会;
关键词
NETWORK; MODEL; CONNECTIVITY; INFORMATION; COMPLEXITY;
D O I
10.1016/j.cobeha.2024.101394
中图分类号
B84 [心理学]; C [社会科学总论]; Q98 [人类学];
学科分类号
03 ; 0303 ; 030303 ; 04 ; 0402 ;
摘要
The brain is hierarchically organised across many levels, from the underlying anatomical connectivity to the resulting functional dynamics, which supports the necessary orchestration to ensure sufficient cognitive and behavioural flexibility. Here, we show how two emerging frameworks have been used to determine the brain's functional hierarchy and its reconfiguration in different cognitive tasks. One study used direct estimation of the information flow across a whole experiment to reveal the common top hierarchical regions orchestrating brain dynamics across rest and seven cognitive tasks. Another study used complementary, indirect spatiotemporal measures defining hierarchy as the asymmetry in the directionality of information flow to identify a set of regions within the prefrontal cortex (PFC) that serve as the common, unifying drivers of brain dynamics during tasks. Overall, these studies are beginning to reveal the orchestration of whole-brain dynamics and how specific PFC regions are key to driving our cognitive and behavioural flexibility.
引用
收藏
页数:8
相关论文
共 49 条
[1]   Hierarchical Error Representation: A Computational Model of Anterior Cingulate and Dorsolateral Prefrontal Cortex [J].
Alexander, William H. ;
Brown, Joshua W. .
NEURAL COMPUTATION, 2015, 27 (11) :2354-2410
[2]   Modeling the Impact of Lesions in the Human Brain [J].
Alstott, Jeffrey ;
Breakspear, Michael ;
Hagmann, Patric ;
Cammoun, Leila ;
Sporns, Olaf .
PLOS COMPUTATIONAL BIOLOGY, 2009, 5 (06)
[3]  
Baars B.J., 1989, COGNITIVE THEORY CON
[4]  
Badre D, 2019, HAND CLINIC, V163, P165, DOI 10.1016/B978-0-12-804281-6.00009-4
[5]   Hierarchically organized behavior and its neural foundations: A reinforcement learning perspective [J].
Botvinick, Matthew M. ;
Niv, Yael ;
Barto, Andrew C. .
COGNITION, 2009, 113 (03) :262-280
[6]   Characterization of Cortical Networks and Corticocortical Functional Connectivity Mediating Arbitrary Visuomotor Mapping [J].
Brovelli, Andrea ;
Chicharro, Daniel ;
Badier, Jean-Michel ;
Wang, Huifang ;
Jirsa, Viktor .
JOURNAL OF NEUROSCIENCE, 2015, 35 (37) :12643-12658
[7]   The economy of brain network organization [J].
Bullmore, Edward T. ;
Sporns, Olaf .
NATURE REVIEWS NEUROSCIENCE, 2012, 13 (05) :336-349
[8]  
Buzsaki G., 2019, BRAIN INSIDE OUT, DOI DOI 10.1093/OSO/9780190905385.001.0001
[9]   Framework to study dynamic dependencies in networks of interacting processes [J].
Chicharro, Daniel ;
Ledberg, Anders .
PHYSICAL REVIEW E, 2012, 86 (04)
[10]   The cognitive control network: Integrated cortical regions with dissociable functions [J].
Cole, Michael W. ;
Schneider, Walter .
NEUROIMAGE, 2007, 37 (01) :343-360