Hopf and Zero-Hopf Bifurcation Analysis for a Chaotic System

被引:1
作者
Husien, Ahmad Muhamad [1 ]
Amen, Azad Ibrahim [2 ,3 ,4 ]
机构
[1] Univ Duhok, Coll Sci, Dept Math, Duhok 42001, Kurdistan, Iraq
[2] Salahaddin Univ Erbil, Coll Basic Educ, Dept Math, Erbil 44001, Kurdistan, Iraq
[3] Soran Univ, Fac Sci, Dept Math, Soran 44008, Kurdistan, Iraq
[4] Raparin Univ, Basic Educ Coll, Dept Math, Ranya 46012, Kurdistan, Iraq
来源
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS | 2024年 / 34卷 / 08期
关键词
Chaotic system; zero-Hopf bifurcation; Hopf bifurcation; periodic solution; POINTS; FLOWS;
D O I
10.1142/S0218127424501049
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we investigate a quadratic chaotic system modeling self-excited and hidden attractors which is described by a system of three nonlinear ordinary differential equations with three real parameters. The primary goal is to establish the existence of two limit cycles that bifurcate based on the system's nature as an electronic circuits model, specifically via Hopf bifurcation. Notably, the application of the first and second Lyapunov coefficients is utilized to demonstrate the bifurcation of two limit cycles from an equilibrium point near a Hopf critical point. Furthermore, employing the first-order averaging theory enables us to confirm the presence of unstable periodic orbits originating from the zero-Hopf equilibrium.
引用
收藏
页数:19
相关论文
共 30 条
[1]  
Amen A. I., 2023, ZANCO J PURE APPL SC, V35, P42
[2]  
Amen Azad Ibrahim., 2022, Zanco, J. Pure Appl. Sci., V34, P83
[3]  
Andronov AA., 1971, ISRAEL PROGRAM SCI T
[4]   Existence of inverse Jacobi multipliers around Hopf points in R3: Emphasis on the center problem [J].
Buica, Adriana ;
Garcia, Isaac A. ;
Maza, Susanna .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2012, 252 (12) :6324-6336
[5]   Bifurcation\instability forms of high speed railway vehicles [J].
Dong Hao ;
Zeng Jing ;
Xie JianHua ;
Jia Lu .
SCIENCE CHINA-TECHNOLOGICAL SCIENCES, 2013, 56 (07) :1685-1696
[6]   Perpetual points and hidden attractors in dynamical systems [J].
Dudkowski, Dawid ;
Prasad, Awadhesh ;
Kapitaniak, Tomasz .
PHYSICS LETTERS A, 2015, 379 (40-41) :2591-2596
[7]   BIFURCATION OF THE HODGKIN AND HUXLEY EQUATIONS - A NEW TWIST [J].
GUCKENHEIMER, J ;
LABOURIAU, IS .
BULLETIN OF MATHEMATICAL BIOLOGY, 1993, 55 (05) :937-952
[8]  
Husien A. M., 2015, THESIS SALAHADDIN U
[9]   Integrability and Global Dynamics of Two Chaotic Systems [J].
Hussein, Sarbast ;
Amen, Azad Ibrahim .
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2023, 33 (14)
[10]   Recent new examples of hidden attractors [J].
Jafari, S. ;
Sprott, J. C. ;
Nazarimehr, F. .
EUROPEAN PHYSICAL JOURNAL-SPECIAL TOPICS, 2015, 224 (08) :1469-1476