Dilated convolutional neural network for detecting extreme-mass-ratio inspirals

被引:3
作者
Zhao, Tianyu [1 ,2 ,3 ]
Zhou, Yue [2 ]
Shi, Ruijun [1 ,3 ]
Cao, Zhoujian [1 ,3 ,4 ]
Ren, Zhixiang [1 ,2 ]
机构
[1] Beijing Normal Univ, Dept Astron, Beijing 100875, Peoples R China
[2] Peng Cheng Lab, Shenzhen 518055, Peoples R China
[3] Beijing Normal Univ, Inst Frontiers Astron & Astrophys, Beijing 102206, Peoples R China
[4] UCAS, Hangzhou Inst Adv Study, Sch Fundamental Phys & Math Sci, Hangzhou 310024, Peoples R China
关键词
TESTING GENERAL-RELATIVITY; SPACE; PHYSICS;
D O I
10.1103/PhysRevD.109.084054
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
The detection of extreme-mass-ratio inspirals (EMRIs) is intricate due to their complex waveforms, extended duration, and low signal-to-noise ratio (SNR), making them more challenging to be identified compared to compact binary coalescences. While matched filtering-based techniques are known for their computational demands, existing deep learning-based methods primarily handle time-domain data and are often constrained by data duration and SNR. In addition, most existing work ignores time delay interferometry (TDI) and applies the long-wavelength approximation in detector response calculations, thus limiting their ability to handle laser frequency noise. In this study, we introduce dilated convolutional neural network for detecting extreme-mass-ratio inspirals (DECODE), an end-to-end model focusing on EMRI signal detection by sequence modeling in the frequency domain. Centered around a dilated causal convolutional neural network, trained on synthetic data considering TDI-1.5 detector response, DECODE can efficiently process a year's worth of multichannel TDI data with an SNR of around 50. We evaluate our model on one-year data with accumulated SNR ranging from 50 to 120 and achieve a true positive rate of 96.3% at a false positive rate of 1%, keeping an inference time of less than 0.01 seconds. With the visualization of three showcased EMRI signals for interpretability and generalization, DECODE exhibits strong potential for future space-based gravitational wave data analyses.
引用
收藏
页数:11
相关论文
共 64 条
  • [11] Bai S., 2018, INT C LEARNING REPRE
  • [12] Gravitational-wave physics and astronomy in the 2020s and 2030s
    Bailes, M.
    Berger, B. K.
    Brady, P. R.
    Branchesi, M.
    Danzmann, K.
    Evans, M.
    Holley-Bockelmann, K.
    Iyer, B. R.
    Kajita, T.
    Katsanevas, S.
    Kramer, M.
    Lazzarini, A.
    Lehner, L.
    Losurdo, G.
    Luck, H.
    McClelland, D. E.
    McLaughlin, M. A.
    Punturo, M.
    Ransom, S.
    Raychaudhury, S.
    Reitze, D. H.
    Ricci, F.
    Rowan, S.
    Saito, Y.
    Sanders, G. H.
    Sathyaprakash, B. S.
    Schutz, B. F.
    Sesana, A.
    Shinkai, H.
    Siemens, X.
    Shoemaker, D. H.
    Thorpe, J.
    van den Brand, J. F. J.
    Vitale, S.
    [J]. NATURE REVIEWS PHYSICS, 2021, 3 (05) : 344 - 366
  • [13] LISA capture sources: Approximate waveforms, signal-to-noise ratios, and parameter estimation accuracy
    Barack, L
    Cutler, C
    [J]. PHYSICAL REVIEW D, 2004, 69 (08): : 24
  • [14] Prospects for fundamental physics with LISA
    Barausse, Enrico
    Berti, Emanuele
    Hertog, Thomas
    Hughes, Scott A.
    Jetzer, Philippe
    Pani, Paolo
    Sotiriou, Thomas P.
    Tamanini, Nicola
    Witek, Helvi
    Yagi, Kent
    Yunes, Nicolas
    Abdelsalhin, T.
    Achucarro, A.
    van Aelst, K.
    Afshordi, N.
    Akcay, S.
    Annulli, L.
    Arun, K. G.
    Ayuso, I.
    Baibhav, V.
    Baker, T.
    Bantilan, H.
    Barreiro, T.
    Barrera-Hinojosa, C.
    Bartolo, N.
    Baumann, D.
    Belgacem, E.
    Bellini, E.
    Bellomo, N.
    Ben-Dayan, I.
    Bena, I.
    Benkel, R.
    Bergshoefs, E.
    Bernard, L.
    Bernuzzi, S.
    Bertacca, D.
    Besancon, M.
    Beutler, F.
    Beyer, F.
    Bhagwat, S.
    Bicak, J.
    Biondini, S.
    Bize, S.
    Blas, D.
    Boehmer, C.
    Boller, K.
    Bonga, B.
    Bonvin, C.
    Bosso, P.
    Bozzola, G.
    [J]. GENERAL RELATIVITY AND GRAVITATION, 2020, 52 (08)
  • [15] Bishop C. M., 2006, Pattern Recognition and Machine Learning
  • [16] Finding the Origin of Noise Transients in LIGO Data with Machine Learning
    Cavaglia, Marco
    Staats, Kai
    Gill, Teerth
    [J]. COMMUNICATIONS IN COMPUTATIONAL PHYSICS, 2019, 25 (04) : 963 - 987
  • [17] Towards a framework for testing general relativity with extreme-mass-ratio-inspiral observations
    Chua, A. J. K.
    Hee, S.
    Handley, W. J.
    Higson, E.
    Moore, C. J.
    Gair, J. R.
    Hobson, M. P.
    Lasenby, A. N.
    [J]. MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2018, 478 (01) : 28 - 40
  • [18] Rapid Generation of Fully Relativistic Extreme-Mass-Ratio-Inspiral Waveform Templates for LISA Data Analysis
    Chua, Alvin J. K.
    Katz, Michael L.
    Warburton, Niels
    Hughes, Scott A.
    [J]. PHYSICAL REVIEW LETTERS, 2021, 126 (05)
  • [19] Augmented kludge waveforms for detecting extreme-mass-ratio inspirals
    Chua, Alvin J. K.
    Moore, Christopher J.
    Gair, Jonathan R.
    [J]. PHYSICAL REVIEW D, 2017, 96 (04)
  • [20] Improved analytic extreme-mass-ratio inspiral model for scoping out eLISA data analysis
    Chua, Alvin J. K.
    Gair, Jonathan R.
    [J]. CLASSICAL AND QUANTUM GRAVITY, 2015, 32 (23)