Dynamics of quantum discommensurations in the Frenkel-Kontorova chain

被引:6
作者
Chelpanova, Oksana [1 ]
Kelly, Shane P. [2 ]
Schmidt-Kaler, Ferdinand [1 ]
Morigi, Giovanna [3 ]
Marino, Jamir [1 ]
机构
[1] Johannes Gutenberg Univ Mainz, Inst Phys, D-55099 Mainz, Germany
[2] Univ Calif Los Angeles, Mani L Bhaumik Inst Theoret Phys, Dept Phys & Astron, Los Angeles, CA 90095 USA
[3] Univ Saarland, Theoret Phys, D-66123 Saarbrucken, Germany
关键词
COMMENSURATE-INCOMMENSURATE TRANSITION; KINKS; MODEL;
D O I
10.1103/PhysRevB.109.214107
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The ability for real-time control of topological defects can open up prospects for dynamical manipulation of macroscopic properties of solids. A subcategory of these defects, formed by particle dislocations, can be effectively described using the Frenkel-Kontorova chain, which characterizes the dynamics of these particles in a periodic lattice potential. This model is known to host solitons, which are the topological defects of the system and are linked to structural transitions in the chain. This work addresses three key questions. Firstly, we investigate how imperfections present in concrete implementations of the model affect the properties of topological defects. Secondly, we explore how solitons can be injected after the rapid change in lattice potential or nucleated due to quantum fluctuations. Finally, we analyze the propagation and scattering of solitons, examining the role of quantum fluctuations and imperfections in influencing these processes. Furthermore, we address the experimental implementation of the Frenkel-Kontorova model. Focusing on the trapped ion quantum simulator, we set the stage for controllable dynamics of topological excitations and their observation in this platform.
引用
收藏
页数:20
相关论文
共 110 条
[1]   Peierls-Nabarro barrier effect in nonlinear Floquet topological insulators [J].
Ablowitz, Mark J. ;
Cole, Justin T. ;
Hu, Pipi ;
Rosenthal, Peter .
PHYSICAL REVIEW E, 2021, 103 (04)
[2]  
Abramowitz M., 1988, Am. J. Phys., V56, P958
[3]  
Ahmed MT, 2023, Arxiv, DOI arXiv:2309.07325
[4]   Correlations in the sine-Gordon model with finite soliton density [J].
Aristov, DN ;
Luther, A .
PHYSICAL REVIEW B, 2002, 65 (16) :1-11
[5]   Optical conductivity of one-dimensional doped Hubbard-Mott insulator [J].
Aristov, DN ;
Cheianov, VV ;
Luther, A .
PHYSICAL REVIEW B, 2002, 66 (07) :731051-731054
[6]  
Ashcroft N. W., 2001, Festkorperphysik.
[7]   Collision of φ4 kinks free of the Peierls-Nabarro barrier in the regime of strong discreteness [J].
Askari, Alidad ;
Marjaneh, Aliakbar Moradi ;
Rakhmatullina, Zhanna G. ;
Ebrahimi-Loushab, Mahdy ;
Saadatmand, Danial ;
Gani, Vakhid A. ;
Kevrekidis, Panayotis G. ;
Dmitriev, Sergey, V .
CHAOS SOLITONS & FRACTALS, 2020, 138
[9]   Quantum quenches of ion Coulomb crystals across structural instabilities [J].
Baltrusch, Jens D. ;
Cormick, Cecilia ;
Morigi, Giovanna .
PHYSICAL REVIEW A, 2012, 86 (03)
[10]   Quantum superpositions of crystalline structures [J].
Baltrusch, Jens D. ;
Cormick, Cecilia ;
De Chiara, Gabriele ;
Calarco, Tommaso ;
Morigi, Giovanna .
PHYSICAL REVIEW A, 2011, 84 (06)