Electrochemical CO2 reduction and mineralisation in calcium containing electrolytes

被引:2
作者
Lee, Chong-Yong [1 ]
Zou, Jinshuo [1 ]
Wallace, Gordon G. [1 ]
机构
[1] Univ Wollongong, Intelligent Polymer Res Inst, ARC Ctr Excellence Electromat Sci, AIIM,Fac Engn & Informat Sci, Innovat Campus, Wollongong, NSW 2500, Australia
基金
澳大利亚研究理事会;
关键词
Carbon dioxide reduction; Electrocatalysis; Carbon dioxide mineralisation; Silver catalyst; CARBON-DIOXIDE; SEAWATER; ELECTRODES; ELECTROREDUCTION; TECHNOLOGY; CAPTURE; ENERGY; FUELS;
D O I
10.1016/j.mtchem.2024.102117
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
One of the key challenges of room temperature aqueous CO2 electrolysis technology is the carbon losses because of carbonate formation. It is desirable if carbonate ions could be utilized concurrently for a useful process. Herein, we devise a strategy that enables in-situ electroreduction and assisted CO2 storage using a by-product of that reduction process and carbonate ions. By employing a Ag catalyst deposited on a gas diffusion layer, we demonstrate CO2 electroreduction and concurrent storage via mineralisation using seawater, as well as other calcium containing electrolytes. For example, CO2 electroreduction in 0.6 M Na2SO4 containing 400 ppm Ca electrolyte results in a Faradaic conversion efficiency to CO of -90 % at - 1.4 V vs. RHE (-60 +/- 6 mA cm-2), and concurrently stored CO2 as calcium carbonate. This bioinspired work offers a new avenue where CO2 storage is incorporated in a sustainable CO2 electroreduction technology.
引用
收藏
页数:7
相关论文
共 41 条
[1]  
Alexandra E.J.W., 2008, Emory L.J., V58, P103
[2]   Catalysis for the Valorization of Exhaust Carbon: from CO2 to Chemicals, Materials, and Fuels. Technological Use of CO2 [J].
Aresta, Michele ;
Dibenedetto, Angela ;
Angelini, Antonella .
CHEMICAL REVIEWS, 2014, 114 (03) :1709-1742
[3]   CO2 reduction on gas-diffusion electrodes and why catalytic performance must be assessed at commercially-relevant conditions [J].
Burdyny, Thomas ;
Smith, Wilson A. .
ENERGY & ENVIRONMENTAL SCIENCE, 2019, 12 (05) :1442-1453
[4]   Anthropogenic carbon and ocean pH [J].
Caldeira, K ;
Wickett, ME .
NATURE, 2003, 425 (6956) :365-365
[5]   Progress toward Commercial Application of Electrochemical Carbon Dioxide Reduction [J].
Chen, Chi ;
Kotyk, Juliet F. Khosrowabadi ;
Sheehan, Stafford W. .
CHEM, 2018, 4 (11) :2571-2586
[6]   Recent increase in oceanic carbon uptake driven by weaker upper-ocean overturning [J].
DeVries, Tim ;
Holzer, Mark ;
Primeau, Francois .
NATURE, 2017, 542 (7640) :215-218
[7]   Design Criteria, Operating Conditions, and Nickel-Iron Hydroxide Catalyst Materials for Selective Seawater Electrolysis [J].
Dionigi, Fabio ;
Reier, Tobias ;
Pawolek, Zarina ;
Gliech, Manuel ;
Strasser, Peter .
CHEMSUSCHEM, 2016, 9 (09) :962-972
[8]   Renewable energy resources: Current status, future prospects and their enabling technology [J].
Ellabban, Omar ;
Abu-Rub, Haitham ;
Blaabjerg, Frede .
RENEWABLE & SUSTAINABLE ENERGY REVIEWS, 2014, 39 :748-764
[9]   Fixation of CO2 by carbonating calcium derived from blast furnace slag [J].
Eloneva, Sanni ;
Teir, Sebastian ;
Salminen, Justin ;
Fogelholm, Carl-Johan ;
Zevenhoven, Ron .
ENERGY, 2008, 33 (09) :1461-1467
[10]   Fuel Production from Seawater and Fuel Cells Using Seawater [J].
Fukuzumi, Shunichi ;
Lee, Yong-Min ;
Nam, Wonwoo .
CHEMSUSCHEM, 2017, 10 (22) :4264-4276