GHOST: Graph-based higher-order similarity transformation for classification

被引:0
作者
Battistella, Enzo [1 ,2 ,3 ]
Vakalopoulou, Maria [1 ,2 ]
Paragios, Nikos [1 ,2 ,4 ]
Deutsch, Eric [3 ]
机构
[1] Univ Paris Saclay, Cent Supelec, Math & Informat Complex & Syst, Gif Sur Yvette, France
[2] Univ Paris Saclay, Cent Supelec, Inria, Gif Sur Yvette, France
[3] Univ Paris Saclay, Inst Gustave Roussy, Inserm Mol Radiotherapy & Innovat Therapeut U1030, Villejuif, France
[4] Therapanacea, Paris, France
关键词
Feature selection; Distance learning; Higher-order;
D O I
10.1016/j.patcog.2024.110623
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Exploring and identifying a good feature representation to describe high -dimensional datasets is a challenge of prime importance. However, plenty of feature selection techniques and distance metrics exist, which entails an intricacy for identifying the one best suited to the task. This paper provides an algorithm to design highorder distance metrics over a sparse selection of features dedicated to classification. Our approach is based on Conditional Random Field (CRF) energy minimization and Dual Decomposition, which allow efficiency and great flexibility in the considered features. The optimization technique ensures the tractability of highdimensionality problems using hundreds of features and samples. Our approach is evaluated on synthetic data as well as on Covid-19 patient stratification. Comparisons with state-of-the-art baselines and our proposed method on different classification results prove the learned metric's relevance.
引用
收藏
页数:9
相关论文
共 34 条
[1]   A Survey on Hypergraph Representation Learning [J].
Antelmi, Alessia ;
Cordasco, Gennaro ;
Polato, Mirko ;
Scarano, Vittorio ;
Spagnuolo, Carmine ;
Yang, Dingqi .
ACM COMPUTING SURVEYS, 2024, 56 (01)
[2]  
Battistella E., 2019, IWBBIO 2019
[3]  
Battistella E., 2018, INT C AG ART INT
[4]  
Battistella E., 2021, arXiv
[5]   Higher-order organization of complex networks [J].
Benson, Austin R. ;
Gleich, David F. ;
Leskovec, Jure .
SCIENCE, 2016, 353 (6295) :163-166
[6]   LanDis: the disease landscape explorer [J].
Caniza, Horacio ;
Caceres, Juan J. ;
Torres, Mateo ;
Paccanaro, Alberto .
EUROPEAN JOURNAL OF HUMAN GENETICS, 2024, 32 (04) :461-465
[7]   AI-driven quantification, staging and outcome prediction of COVID-19 pneumonia [J].
Chassagnon, Guillaume ;
Vakalopoulou, Maria ;
Battistella, Enzo ;
Christodoulidis, Stergios ;
Trieu-Nghi Hoang-Thi ;
Dangeard, Severine ;
Deutsch, Eric ;
Andre, Fabrice ;
Guillo, Enora ;
Halm, Nara ;
El Hajj, Stefany ;
Bompard, Florian ;
Neveu, Sophie ;
Hani, Chahinez ;
Saab, Ines ;
Campredon, Alienor ;
Koulakian, Hasmik ;
Bennani, Souhail ;
Freche, Gael ;
Barat, Maxime ;
Lombard, Aurelien ;
Fournier, Laure ;
Monnier, Hippolyte ;
Grand, Teodor ;
Gregory, Jules ;
Nguyen, Yann ;
Khalil, Antoine ;
Mahdjoub, Elyas ;
Brillet, Pierre-Yves ;
Ba, Stephane Tran ;
Bousson, Valerie ;
Mekki, Ahmed ;
Carlier, Robert-Yves ;
Revel, Marie-Pierre ;
Paragios, Nikos .
MEDICAL IMAGE ANALYSIS, 2021, 67
[8]   A machine-learning procedure to detect network attacks [J].
Coppes, Davide ;
Cermelli, Paolo .
JOURNAL OF COMPLEX NETWORKS, 2023, 11 (03)
[9]  
Davidson I, 2005, SIAM PROC S, P138
[10]   Community detection in complex networks: From statistical foundations to data science applications [J].
Dey, Asim K. ;
Tian, Yahui ;
Gel, Yulia R. .
WILEY INTERDISCIPLINARY REVIEWS-COMPUTATIONAL STATISTICS, 2022, 14 (02)