Personalized analysis of human cancer multi-omics for precision oncology

被引:1
作者
Li, Jiaao [1 ,3 ]
Tian, Jingyi [1 ,3 ]
Liu, Yachen [2 ,3 ]
Liu, Zan [1 ,2 ,3 ]
Tong, Mengsha [1 ,2 ,3 ]
机构
[1] Xiamen Univ, Fac Med & Life Sci, Sch Life Sci, State Key Lab Cellular Stress Biol, Xiamen 361102, Fujian, Peoples R China
[2] Xiamen Univ, Natl Inst Data Sci Hlth & Med, Xiamen 361102, Fujian, Peoples R China
[3] Xiamen Univ, Sch Informat, Xiamen 316000, Peoples R China
来源
COMPUTATIONAL AND STRUCTURAL BIOTECHNOLOGY JOURNAL | 2024年 / 23卷
基金
中国国家自然科学基金;
关键词
Precision oncology; Multi-omics; Individualized analysis; DIFFERENTIALLY EXPRESSED GENES;
D O I
10.1016/j.csbj.2024.05.011
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Multi-omics technologies, encompassing genomics, proteomics, and transcriptomics, provide profound insights into cancer biology. A fundamental computational approach for analyzing multi-omics data is differential analysis, which identifies molecular distinctions between cancerous and normal tissues. Traditional methods, however, often fail to address the distinct heterogeneity of individual tumors, thereby neglecting crucial patientspecific molecular traits. This shortcoming underscores the necessity for tailored differential analysis algorithms, which focus on particular patient variations. Such approaches offer a more nuanced understanding of cancer biology and are instrumental in pinpointing personalized therapeutic strategies. In this review, we summarize the principles of current individualized techniques. We also review their efficacy in analyzing cancer multi-omics data and discuss their potential applications in clinical practice.
引用
收藏
页码:2049 / 2056
页数:8
相关论文
共 25 条
[1]   Gene Ontology: tool for the unification of biology [J].
Ashburner, M ;
Ball, CA ;
Blake, JA ;
Botstein, D ;
Butler, H ;
Cherry, JM ;
Davis, AP ;
Dolinski, K ;
Dwight, SS ;
Eppig, JT ;
Harris, MA ;
Hill, DP ;
Issel-Tarver, L ;
Kasarskis, A ;
Lewis, S ;
Matese, JC ;
Richardson, JE ;
Ringwald, M ;
Rubin, GM ;
Sherlock, G .
NATURE GENETICS, 2000, 25 (01) :25-29
[2]   A Bayesian framework for the analysis of microarray expression data: regularized t-test and statistical inferences of gene changes [J].
Baldi, P ;
Long, AD .
BIOINFORMATICS, 2001, 17 (06) :509-519
[3]   Identifying differentially expressed genes from cross-site integrated data based on relative expression orderings [J].
Cai, Hao ;
Li, Xiangyu ;
Li, Jing ;
Liang, Qirui ;
Zheng, Weicheng ;
Guan, Qingzhou ;
Guo, Zheng ;
Wang, Xianlong .
INTERNATIONAL JOURNAL OF BIOLOGICAL SCIENCES, 2018, 14 (08) :892-900
[4]   Prediction of Cancer Driver Genes through Integrated Analysis of Differentially Expressed Genes at the Individual Level [J].
Gao, Bo ;
Zhao, Yue ;
Li, Guojun .
CURRENT BIOINFORMATICS, 2023, 18 (10) :792-804
[5]   A proteomic landscape of diffuse-type gastric cancer [J].
Ge, Sai ;
Xia, Xia ;
Ding, Chen ;
Zhen, Bei ;
Zhou, Quan ;
Feng, Jinwen ;
Yuan, Jiajia ;
Chen, Rui ;
Li, Yumei ;
Ge, Zhongqi ;
Ji, Jiafu ;
Zhang, Lianhai ;
Wang, Jiayuan ;
Li, Zhongwu ;
Lai, Yumei ;
Hu, Ying ;
Li, Yanyan ;
Li, Yilin ;
Gao, Jing ;
Chen, Lin ;
Xu, Jianming ;
Zhang, Chunchao ;
Jung, Sung Yun ;
Choi, Jong Min ;
Jain, Antrix ;
Liu, Mingwei ;
Song, Lei ;
Liu, Wanlin ;
Guo, Gaigai ;
Gong, Tongqing ;
Huang, Yin ;
Qiu, Yang ;
Huang, Wenwen ;
Shi, Tieliu ;
Zhu, Weimin ;
Wang, Yi ;
He, Fuchu ;
Shen, Lin ;
Qin, Jun .
NATURE COMMUNICATIONS, 2018, 9
[6]   KEGG: Kyoto Encyclopedia of Genes and Genomes [J].
Kanehisa, M ;
Goto, S .
NUCLEIC ACIDS RESEARCH, 2000, 28 (01) :27-30
[7]  
Kong X, 2024, Brief Bioinforma, V25, pbba
[8]   Application of Proteomics in Cancer: Recent Trends and Approaches for Biomarkers Discovery [J].
Kwon, Yang Woo ;
Jo, Han-Seul ;
Bae, Sungwon ;
Seo, Youngsuk ;
Song, Parkyong ;
Song, Minseok ;
Yoon, Jong Hyuk .
FRONTIERS IN MEDICINE, 2021, 8
[9]   MOST: detecting cancer differential gene expression [J].
Lian, Heng .
BIOSTATISTICS, 2008, 9 (03) :411-418
[10]   Application of individualized differential expression analysis in human cancer proteome [J].
Liu, Yachen ;
Lin, Yalan ;
Yang, Wenxian ;
Lin, Yuxiang ;
Wu, Yujuan ;
Zhang, Zheyang ;
Lin, Nuoqi ;
Wang, Xianlong ;
Tong, Mengsha ;
Yu, Rongshan .
BRIEFINGS IN BIOINFORMATICS, 2022, 23 (03)