Roman {3}-domination in graphs: Complexity and algorithms

被引:0
作者
Chaudhary, Juhi [1 ]
Pradhan, Dinabandhu [2 ]
机构
[1] Bengurion Univ Negev, Dept Comp Sci, Beer Sheva, Israel
[2] Indian Inst Technol ISM, Dept Math & Comp, Dhanbad, India
关键词
Domination; Roman domination; Roman {2}-domination (Italian domination); Roman {3}-domination (double Italian domination); NP-completeness; ITALIAN DOMINATION; APPROXIMATION; COMPLETENESS; TREE; SET;
D O I
10.1016/j.dam.2022.09.017
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A Roman {3}-dominating function on a graph G is a function f : V(G) -> {0, 1, 2, 3} having the property that for any vertex u E V(G), if f (u) = 0, then & sum; f (u) = 1, then & sum;(vENG(u))f(v) >= 3, and if the sum f(V(G)) = & sum; (vENG(u))f(v) >= 2. The weight of a Roman {3}-dominating function f is v(EV(G))f(v) and the minimum weight of a Roman {3}-dominating function on G is called the Roman {3}-domination number of G and is denoted by gamma({R3})(G). Given a graph G, ROMAN {3}-DOMINATION asks to find the minimum weight of a Roman {3}-dominating function on G. In this paper, we study the algorithmic aspects of ROMAN {3}-DOMINATION on various graph classes. We show that the decision version of ROMAN {3}-DOMINATION remains NP-complete for chordal bipartite graphs, planar graphs, starconvex bipartite graphs, and chordal graphs. We show that ROMAN {3}-DOMINATION cannot be approximated within a ratio of (1/3 - epsilon)ln |V(G)| for any epsilon > 0 unless P = NP for bipartite graphs as well as chordal graphs, whereas ROMAN {3}-DOMINATION can be approximated within a factor of O(ln triangle) for graphs having maximum degree triangle. We also show that ROMAN {3}-DOMINATION is APX-complete for graphs with maximum degree 4. On the positive side, we show that ROMAN {3}-DOMINATION can be solved in linear time for chain graphs and cographs. (c) 2022 Elsevier B.V. All rights reserved.
引用
收藏
页码:301 / 325
页数:25
相关论文
共 35 条
[1]   On the double Roman domination in graphs [J].
Ahangar, Hossein Abdollahzadeh ;
Chellali, Mustapha ;
Sheikholeslami, Seyed Mahmoud .
DISCRETE APPLIED MATHEMATICS, 2017, 232 :1-7
[2]   Some APX-completeness results for cubic graphs [J].
Alimonti, P ;
Kann, V .
THEORETICAL COMPUTER SCIENCE, 2000, 237 (1-2) :123-134
[3]   An upper bound on the double Roman domination number [J].
Amjadi, J. ;
Nazari-Moghaddam, S. ;
Sheikholeslami, S. M. ;
Volkmann, L. .
JOURNAL OF COMBINATORIAL OPTIMIZATION, 2018, 36 (01) :81-89
[4]  
Ausiello Giorgio., 2012, Complexity and approximation: Combinatorial optimization problems and their approxima-bility properties, DOI DOI 10.1007/978-3-642-58412-1
[5]   Perfect Italian domination in cographs [J].
Banerjee, S. ;
Henning, Michael A. ;
Pradhan, D. .
APPLIED MATHEMATICS AND COMPUTATION, 2021, 391
[6]   Perfect Roman domination in graphs [J].
Banerjee, S. ;
Keil, J. Mark ;
Pradhan, D. .
THEORETICAL COMPUTER SCIENCE, 2019, 796 :1-21
[7]   Algorithmic results on double Roman domination in graphs [J].
Banerjee, S. ;
Henning, Michael A. ;
Pradhan, D. .
JOURNAL OF COMBINATORIAL OPTIMIZATION, 2020, 39 (01) :90-114
[8]   A REVIEW OF TREE CONVEX SETS TEST [J].
Bao, Forrest Sheng ;
Zhang, Yuanlin .
COMPUTATIONAL INTELLIGENCE, 2012, 28 (03) :358-372
[9]   Double Roman domination [J].
Beeler, Robert A. ;
Haynes, Teresa W. ;
Hedetniemi, Stephen T. .
DISCRETE APPLIED MATHEMATICS, 2016, 211 :23-29
[10]   Roman {2}-domination [J].
Chellali, Mustapha ;
Haynes, Teresa W. ;
Hedetniemi, Stephen T. ;
McRae, Alice A. .
DISCRETE APPLIED MATHEMATICS, 2016, 204 :22-28