A note on approximate Hadamard matrices

被引:0
作者
Steinerberger, Stefan [1 ]
机构
[1] Univ Washington, Dept Math, Seattle, WA 98195 USA
关键词
Hadamard matrices; Near hadamard matrices; Littlewood conjecture; Littlewood polynomials; POLYNOMIALS;
D O I
10.1007/s10623-024-01430-w
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
A Hadamard matrix is a scaled orthogonal matrix with +/- 1 entries. Such matrices exist in certain dimensions: the Hadamard conjecture is that such a matrix always exists when n is a multiple of 4. A conjecture attributed to Ryser is that no circulant Hadamard matrices exist whenn>4. Recently, Dong and Rudelson proved the existence of approximate Hadamard matrices in all dimensions: there exist universal 0<c<C= 1, there is a matrix A is an element of{-1,1}nxn satisfying, for allx is an element of Rn, c root n & Vert;x & Vert;2 <=& Vert;Ax & Vert;2 <= C root n & Vert;x & Vert;2. We observe that, as a consequence of the existence of flat Littlewood polynomials, circulant approximate Hadamard matrices exist for all n >= 1 .
引用
收藏
页码:3125 / 3131
页数:7
相关论文
共 24 条
[1]  
Agaian S.S., 1985, HADAMARD MATRICES TH, V1168
[2]  
[Anonymous], 1933, Journal of Mathematics and Physics, DOI DOI 10.1002/SAPM1933121311
[3]   Flat Littlewood polynomials exist [J].
Balister, Paul ;
Bollobas, Bela ;
Morris, Robert ;
Sahasrabudhe, Julian ;
Tiba, Marius .
ANNALS OF MATHEMATICS, 2020, 192 (03) :977-1004
[4]   Almost Hadamard Matrices: General Theory and Examples [J].
Banica, Teodor ;
Nechita, Ion ;
Zyczkowski, Karol .
OPEN SYSTEMS & INFORMATION DYNAMICS, 2012, 19 (04)
[5]  
Bombieri E, 2009, J EUR MATH SOC, V11, P627
[6]  
Borwein e P., 2008, em Number Theory and Polynomials, P71
[7]  
CARROLL FW, 1977, J LOND MATH SOC, V16, P76
[8]   Approximately Hadamard Matrices and Riesz Bases in Random Frames [J].
Dong, Xiaoyu ;
Rudelson, Mark .
INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2024, 2024 (03) :2044-2065
[9]   MULTI-SLIT SPECTROMETRY [J].
GOLAY, MJE .
JOURNAL OF THE OPTICAL SOCIETY OF AMERICA, 1949, 39 (06) :437-444
[10]  
Horadam K.J., 2007, Hadamard Matrices and Their Applications, DOI [10.1515/9781400842902, DOI 10.1515/9781400842902]