Enhanced Flame Retardancy and Mechanical Properties of Polylactic Acid Composites with Phytate-Chelated Nanotitanium Dioxide-Modified Bagasse Cellulose

被引:3
作者
Li, Dacheng [1 ,2 ]
Ye, Liangdong [1 ]
Liu, Hongbo [1 ]
Chen, Dongming [1 ]
Wei, Qiaoyan [1 ,2 ]
Zhang, Xianhui [3 ]
Li, Ziwei [1 ]
Lu, Shaorong [1 ]
机构
[1] Guilin Univ Technol, Sch Mat Sci & Engn, Key Lab New Proc Technol Nonferrous Met & Mat, Minist Educ, Guilin 541004, Peoples R China
[2] Guangxi Sci & Technol Normal Univ, Laibin 546199, Peoples R China
[3] Shuguang Rubber Ind Res & Design Inst, China Chem Ind Res Inst, Guilin 541000, Peoples R China
来源
ACS APPLIED POLYMER MATERIALS | 2024年 / 6卷 / 12期
基金
中国国家自然科学基金;
关键词
polylactic acid (PLA); microcrystalline bagasse cellulose(MBC); phytic acid (PA); flame retardancy; molecular dynamics simulation; FLAMMABILITY; FIBERS;
D O I
10.1021/acsapm.4c00340
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Despite the potential of polylactic acid (PLA) as a biodegradable polymer, widespread applications have been limited by its inherent flammability and brittleness. To overcome these issues, PLA was combined with a composite-reinforced flame-retardant filler (A-MBC/PA/A-TiO2) consisting of gamma-aminopropyl triethoxysilane (APTES)-grafted microcrystalline bagasse cellulose (A-MBC), phytic acid (PA), and APTES-silylated titanium dioxide nanoparticles (A-TiO2). When 10 wt % A-MBC/PA/A-TiO2 was incorporated, the tensile and impact strengths of the PLA composite increased by 15 and 22%, respectively, relative to those of pristine PLA. The addition of 10 wt % A-MBC/PA/A-TiO2 resulted in PLA composites with a UL-94 V-0 rating and a high limiting oxygen index of 29% owing to a synergistic flame-retardant mechanism in the gas and condensed phases. The presence of A-MBC/PA/A-TiO2 contributed to the formation of a solid carbon layer containing P and Ti in the condensed phase as well as the release of PO<middle dot> free radicals and N-containing noncombustible gases in the gas phase, which reduced the flammable gas and oxygen concentrations, thus providing a synergistic flame-retardant effect. In addition, molecular dynamics simulations of the PLA/(A-MBC/PA/A-TiO2) composite system were performed. The numerical and analytical results showed that A-MBC and A-TiO2 in the filler interacted strongly with the PLA matrix, which was beneficial for distributing the flame retardant in PLA and improving its mechanical and flame-retardant properties. This work demonstrates a strategy for simultaneously improving the flame retardancy and mechanical properties of PLA composites using a biobased composite flame retardant.
引用
收藏
页码:6906 / 6916
页数:11
相关论文
共 40 条
[1]   An overview of the recent advances in flame retarded poly(lactic acid) [J].
Baochai, Li ;
Bakar, Aznizam Abu ;
Mohamad, Zurina .
POLYMERS FOR ADVANCED TECHNOLOGIES, 2023, 34 (05) :1435-1450
[2]   A Compatible Interface of Wheat Straw/Polylactic Acid Composites Collaborative Constructed Using KH570-Nano TiO2 [J].
Chen, Kang ;
Liao, Chenggang ;
Li, Ping ;
Li, Xingong ;
Li, Xianjun ;
Zuo, Yingfeng .
JOURNAL OF POLYMERS AND THE ENVIRONMENT, 2022, 30 (06) :2209-2221
[3]   Fire retardancy and thermal behaviors of Cellulose nanofiber/zinc borate aerogel [J].
Cheng, Xudong ;
Zhu, Siyu ;
Pan, Yuelei ;
Deng, Yurui ;
Shi, Long ;
Gong, Lunlun .
CELLULOSE, 2020, 27 (13) :7463-7474
[4]   Effect of aluminosilicate on flame-retardant and mechanical properties of lignocellulose composite [J].
Dang, Baokang ;
Chen, Yipeng ;
Yang, Ning ;
Jin, Chunde ;
Sun, Qingfeng .
CELLULOSE, 2018, 25 (07) :4167-4177
[5]   Highly flame retardant, low thermally conducting, and hydrophobic phytic acid-guanazole-cellulose nanofiber composite foams [J].
Ding, Hongliang ;
Qiu, Shuilai ;
Wang, Xin ;
Song, Lei ;
Hu, Yuan .
CELLULOSE, 2021, 28 (15) :9769-9783
[6]   Facile synthesis of soybean protein-based phosphorus-nitrogen flame retardant for poly(lactic acid) [J].
Dong, Luqian ;
Xue, Yuting ;
Huang, Haizhou ;
Shen, Dantong ;
Gao, Weiwei ;
Xu, Fang ;
Weng, Yunxuan ;
Zhang, Yang .
POLYMER DEGRADATION AND STABILITY, 2023, 214
[7]   Atom-economic synthesis of an oligomeric P/N-containing fire retardant towards fire-retarding and mechanically robust polylactide biocomposites [J].
Feng, Jiabing ;
Lu, Yixia ;
Xie, Hongyan ;
Zhang, Yan ;
Huo, Siqi ;
Liu, Xiaohuan ;
Flynn, Matt ;
Xu, Zhiguang ;
Burey, Paulomi ;
Lynch, Mark ;
Wang, Hao ;
Song, Pingan .
JOURNAL OF MATERIALS SCIENCE & TECHNOLOGY, 2023, 160 :86-95
[8]   Preparation of multifunctional silicon-phosphorus acrylate particles for the simultaneous improvement of the flame retardancy and mechanical performance of polylactic acid [J].
Gao, Xueyu ;
Yan, Li ;
Sang, Xiaoming .
JOURNAL OF APPLIED POLYMER SCIENCE, 2023, 140 (04)
[9]   Cellulose Membranes from Cellulose CO2-Based Reversible Ionic Liquid Solutions [J].
Guo, Yuanlong ;
Cai, Long ;
Guo, Gu ;
Xie, Haibo ;
Zhang, Lihua ;
Jin, Longming ;
Liang, Songmiao ;
Hu, Lijie ;
Xu, Qinqin ;
Zheng, Qiang .
ACS SUSTAINABLE CHEMISTRY & ENGINEERING, 2021, 9 (35) :11847-11854
[10]   Grafting cellulose nanocrystals with phosphazene-containing compound for simultaneously enhancing the flame retardancy and mechanical properties of polylactic acid [J].
He, Jingxiu ;
Sun, Zhe ;
Chen, Yajun ;
Xu, Bo ;
Li, Juan ;
Qian, Lijun .
CELLULOSE, 2022, 29 (11) :6143-6160