The nonabelian Brill-Noether divisor on (M)over-tilde13 and the Kodaira dimension of (R)over-tilde13

被引:3
作者
Farkas, Gavril [1 ]
Jensen, David [2 ]
Payne, Sam [3 ]
机构
[1] Humboldt Univ, Inst Math, Berlin, Germany
[2] Univ Kentucky, Dept Math, Lexington, KY USA
[3] Univ Texas Austin, Dept Math, Austin, TX USA
基金
欧盟地平线“2020”; 欧洲研究理事会; 美国国家科学基金会;
关键词
MODULI SPACES; VECTOR-BUNDLES; PRYM VARIETIES; LINEAR SERIES; RANK; CURVES; PETRI; SLOPES; PROOF; LOCI;
D O I
10.2140/gt.2024.28.803
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We highlight several novel aspects of the moduli space of curves of genus 13, the first genus g where phenomena related to K3 surfaces no longer govern the birational geometry of (M) over bar (g). We compute the class of the nonabelian Brill-Noether divisor on (M) over bar (13) of curves that have a stable rank-two vector bundle with canonical determinant and many sections. This provides the first example of an effective divisor onMg with slope less than 6C10=g. Earlier work on the slope conjecture suggested that such divisors may not exist. The main geometric application of our result is a proof that the Prym moduli space (R) over bar (13) is of general type. Among other things, we also prove the Bertram-Feinberg-Mukai and the strong maximal rank conjectures on (M) over bar (13).
引用
收藏
页码:803 / 866
页数:64
相关论文
共 49 条
  • [1] Pencils on Surfaces with Normal Crossings and the Kodaira Dimension of (M)over-barg,n
    Agostini, Daniele
    Barros, Ignacio
    [J]. FORUM OF MATHEMATICS SIGMA, 2021, 9
  • [2] TOPOLOGICAL INVARIANTS OF GROUPS AND KOSZUL MODULES
    Aprodu, Marian
    Farkas, Gavril
    Papadima, Stefan
    Raicu, Claudiu
    Weyman, Jerzy
    [J]. DUKE MATHEMATICAL JOURNAL, 2022, 171 (10) : 2013 - 2046
  • [3] ARBARELLO E., 1985, GRUNDL MATH WISSEN, VI, P267
  • [4] PRYM VARIETIES AND SCHOTTKY PROBLEM
    BEAUVILLE, A
    [J]. INVENTIONES MATHEMATICAE, 1977, 41 (02) : 149 - 196
  • [5] Bertram A, 1998, Lecture Notes in Pure and Appl. Math., V200, P259
  • [6] Rank two vector bundles with canonical determinant
    Bigas, MTI
    [J]. MATHEMATISCHE NACHRICHTEN, 2004, 265 : 100 - 106
  • [7] IRREDUCIBILITY OF MODULI SPACES OF CYCLIC UNRAMIFIED COVERS OF GENUS-G CURVES
    BIGGERS, R
    FRIED, M
    [J]. TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1986, 295 (01) : 59 - 70
  • [8] (R)over-bar15 is of general type
    Bruns, Gregor
    [J]. Algebra & Number Theory, 2016, 10 (09) : 1949 - 1964
  • [9] Chen D., 2013, CLAY MATH P, V18, P131
  • [10] Chiodo A, 2013, INVENT MATH, V194, P73, DOI 10.1007/s00222-012-0441-0